Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Better Computing, Communication for Disaster Response

27.01.2010
Hurricane Katrina. The Southeast Asian tsunami. Now the killer earthquake in Haiti, which has claimed upwards of 50,000 lives. In each case, the response to a natural disaster has been further complicated by the difficulty delivering medical care in a chaotic environment where the communications infrastructure on the ground is seriously damaged or completely destroyed.

To address that problem, researchers at the University of California, San Diego have launched a project to find better ways for emergency officials and first responders to talk to each other and share data on the ground at the scene of a natural or man-made disaster – even when the local communications infrastructure is out of commission.

Approximately $1.5 million annually over two years in “stimulus” funding under the American Recovery and Reinvestment Act (ARRA) from the National Library of Medicine (NLM) will underwrite the WIISARD SAGE project. NLM is one of the National Institutes of Health (NIH).

The new project picks up where the original Wireless Internet Information System for Medical Response in Disasters (WIISARD) left off. That four-year project (2004-08) developed a testbed consisting of devices and software for use by first responders and command center personnel dealing with triage and other medical decisions after a disaster. Building on the WIISARD testbed, the new project (SAGE stands for “Self-scaling Architecture for Group and Enterprise Computing”) will explore group or collaborative computing in mobile environments, as well as self-scaling systems for disaster management (no matter how many personnel and agencies respond to a disaster).

The new project brings together an interdisciplinary team of faculty – most of whom also worked on the original WIISARD – from computer science, cognitive science, electrical engineering and emergency medicine in the UCSD division of the California Institute for Telecommunications and Information Technology (Calit2).

“As the aftermath of the earthquake in Haiti has demonstrated so starkly, communication is a critical ingredient in any medical response to a disaster,” said William Griswold, principal investigator on the WIISARD SAGE project and a professor in the Computer Science and Engineering department of UCSD’s Jacobs School of Engineering. “A critical issue for disaster response is group or collaborative computing in mobile environments. With this new project, we hope to overcome several inter-related problems that inhibit the successful use of information technologies at disaster sites to manage medical care.”

Added Calit2’s division director at UCSD, Ramesh Rao, who is a co-investigator on WIISARD SAGE: “Our goal is not to create systems but to identify and test approaches that will make it feasible to use medical informatics technologies to address the myriad challenges in disaster environments.”

The UCSD researchers will test their solutions with emergency response agencies during large-scale disaster drills in San Diego County – the first one scheduled for mid-May 2010, under the auspices of the federally funded San Diego Regional Metropolitan Medical Strike Team (MMST). MMST is comprised of various police departments, fire departments, hazmat, bomb squads and S.W.A.T. teams throughout San Diego County and was created to coordinate and enhance care of mass casualties in a terrorist attack or natural disaster.

In addition to MMST, the UC San Diego team will also participate in drills organized by California’s Disaster Medical Assistance Team (DMAT). The drills will allow the researchers to measure how successful their new approaches are in terms of key benchmarks, including network and application performance, speed of transmission of information, and the effects on clinical work flow.

The existing WIISARD testbed includes triage and medical data, treatment aspects of field care, and personnel and mass casualty tracking.

According to Theodore Chan, M.D., a professor of clinical medicine in the UC San Diego School of Medicine’s Department of Emergency Medicine, there are three critical obstacles that need to be overcome if information technology is going to improve communication and decision-making after a disaster. “Disaster sites often have a noisy and chaotic electromagnetic environment that makes wireless networks unreliable, so we need to find a way to allow first responders to continue their work – even if their connection to a central server is down,” said Chan, who is the lead medical expert on the WIISARD SAGE project as well as Medical Director of MMST and the emergency departments at UC San Diego Medical Center.

The second problem to be overcome: First responders typically arrive at disaster sites at staggered intervals, and depending on the size of the disaster, emergency personnel could reach into the thousands. So the UCSD researchers are developing systems that are interoperable and self-scaling with progressive growth of capabilities as responders arrive at the scene.

“The third problem is that the capabilities of computer systems in disaster environments will change from moment to moment based on connectivity and infrastructure,” added Chan. “So we want to convey this information to users and also design applications that will use this information in a seamless way to enhance the work flow of emergency medical personnel.”

Ahead of the May disaster drill, the UCSD researchers recently pre-tested some of their new ideas. They include: mobile phones that are equipped with custom software; Bluetooth barcode scanners that allow responders to scan a patient's paper triage tag to bring up their on-site medical record; radio frequency identification (RFID) technology to help track where responders are located at a disaster site; and new network protocols, including Grapevine, a "gossip"-based protocol that allows communication even if not all network connections are functioning. WIISARD SAGE will also add GPS units to the nodes of the ad hoc CalMesh network developed at Calit2, for estimating the positions of responders or disaster victims by triangulating signal strengths.

UC San Diego Medical Center assistant clinical professor Colleen Buono, M.D., is a co-investigator on the WIISARD SAGE project (as she was on the original WIISARD). She will play a critical role in the clinical effort in upcoming disaster drills, as a member of both MMST and DMAT, and in integrating the testing of new approaches with the drills.

"Our pre-drill tests went as well as we could have hoped," said Griswold. "We coped with a lot of uncertainty as far as GPS, windowing systems and cell phone reception, but barely two months into the current project, we now have a platform we can deliver on."

Doug Ramsey, 858-822-5825 or dramsey@ucsd.edu

Doug Ramsey | Newswise Science News
Further information:
http://www.ucsd.edu
http://ucsdnews.ucsd.edu/newsrel/science/01-10Wiisard.asp

More articles from Information Technology:

nachricht The TU Ilmenau develops tomorrow’s chip technology today
27.04.2017 | Technische Universität Ilmenau

nachricht Five developments for improved data exploitation
19.04.2017 | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

How Plants Form Their Sugar Transport Routes

28.04.2017 | Life Sciences

Protein 'spy' gains new abilities

28.04.2017 | Life Sciences

Researchers unravel the social network of immune cells

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>