Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Computer chips: Building upward safely

28.03.2013
A computer model provides important clues for the production of tightly packed electronic components

Greater numbers of ever-smaller components are required to fit on computer chips to meet the ongoing demands of miniaturizing electronic devices. Consequently, computer chips are becoming increasingly crowded.

Designers of electronic architectures have therefore followed the lead of urban planners and started to build upward. In so-called ‘three-dimensional (3D) packages’, for example, several flat, two-dimensional chips can be stacked on top of each other using vertical joints.

Controlling the properties of these complex structures is no easy task, as many factors come into play during production. Faxing Che and Hongyu Li and co-workers from the A*STAR Institute of Microelectronics, Singapore, have now developed a powerful modeling method that allows large-scale simulations — and optimization — of the fabrication process, which provides welcome assistance to designers.

Among the challenges of producing tightly packed computer chips is the need to prevent warpage of the underlying silicon wafer as electronics components are stacked on it. Warpage leads to a number of unwanted effects. “Strong warpage can cause wafer breakage, it makes tight packing more difficult and some processing machines cannot handle high-warpage wafers,” explains Li. The degree of warpage depends on many design and process parameters, and optimizing the procedure experimentally is time-consuming and costly.

Using their computer model, Che and Li studied a wide range of parameters that influence the warpage of an 8-inch diameter silicon wafer. They focused, in particular, on how a silicon substrate responds to the deposition of layers of copper — through which electrical currents eventually flow. “This is the first time that a model has been able to predict warpage [at] the level of the entire wafer,” says Li. Moreover, the stress on the wafer can be determined accurately. The calculated values agreed well with experimental data. Importantly, with the computer simulations, the researchers could explore regimes that cannot be easily studied experimentally, such as how the depth of the connections between layers influences wafer warpage.

The next goal is to simulate even larger wafers with variable connection sizes, explains Li. “Today, there are two industry standards for 3D packaging applications, 8-inch and 12-inch wafers, but the latter are becoming increasingly important,” she says. The team’s model is applicable to these larger wafers, too, but it requires optimization. Currently, Che, Li and their co-workers are collecting warpage and stress data for 12-inch wafers. They will use these data for developing their model further, according to Li.

The A*STAR-affiliated researchers contributing to this research are from the Institute of Microelectronics

Journal information

Che, F.-X. X., Li, H. Y., Zhang, X. W., Gao, S. & Teo, K. H. Development of wafer-level warpage and stress modeling methodology and its application in process optimization for TSV wafers. IEEE Transactions on Components, Packaging and Manufacturing Technology 2, 944–955 (2012)

A*STAR Research | Research asia research news
Further information:
http://www.research.a-star.edu.sg
http://www.researchsea.com

More articles from Information Technology:

nachricht Defining the backbone of future mobile internet access
21.07.2017 | IHP - Leibniz-Institut für innovative Mikroelektronik

nachricht Researchers create new technique for manipulating polarization of terahertz radiation
20.07.2017 | Brown University

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>