Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cloud Computing Method Greatly Increases Gene Analysis

10.09.2010
Researchers at the Johns Hopkins Bloomberg School of Public Health have developed new software that greatly improves the speed at which scientists can analyze RNA sequencing data.

RNA sequencing is used to compare differences in gene expression to identify those genes that switched on or off when, for instance, a particular disease is present. However, sequencing instruments can produce billions of sequences per day, which can be time-consuming and costly to analyze.

The software, known as Myrna, uses “cloud computing,” an Internet-based method of sharing computer resources. Faster, cost-effective analysis of gene expression could be a valuable tool in understanding the genetic causes of disease. The findings are published in the current edition of the journal Genome Biology. The Myrna software is available for free download at http://bowtie-bio.sf.net/myrna.

Cloud computing bundles together the processing power of the individual computers using the Internet. A number of firms with large computing centers including, Amazon and Microsoft, rent unused computers over the Internet for a fee.

“Cloud computing makes economic sense because cloud vendors are very efficient at running and maintaining huge collections of computers. Researchers struggling to keep pace with their sequencing instruments can use the cloud to scale up their analyses while avoiding the headaches associated with building and running their own computer center,” said lead author, Ben Langmead, a research associate in the Bloomberg School’s Department of Biostatistics. “With Myrna, we tried to make it easy for researchers doing RNA sequencing to reap these benefits.”

To test Myrna, Langmead and colleagues Kasper Hansen, PhD, a postdoctoral fellow, and Jeffrey T. Leek, PhD, senior author of the study and assistant professor in the Department of Biostatistics, used the software to process a large collection of publicly available RNA sequencing data. Processing time and storage space were rented from Amazon Web Services. According to the study, Myrna calculated differential expression from 1.1 billion RNA sequencing reads in less than 2 hours at cost of about $66.

“Biological data in many experiments—from brain images to genomic sequences—can now be generated so quickly that it often takes many computers working simultaneously to perform statistical analyses,” said Leeks. “The cloud computing approach we developed for Myrna is one way that statisticians can quickly build different models to find the relevant patterns in sequencing data and connect them to different diseases. Although Myrna is designed to analyze next-generation sequencing reads, the idea of combining cloud computing with statistical modeling may also be useful for other experiments that generate massive amounts of data."

The researchers were supported by grants from Amazon Web Services, the National Institutes of Health and the Johns Hopkins Bloomberg School of Public Health.

Tim Parsons | Newswise Science News
Further information:
http://www.jhsph.edu

More articles from Information Technology:

nachricht Supercomputing the emergence of material behavior
18.05.2018 | University of Texas at Austin, Texas Advanced Computing Center

nachricht Keeping a Close Eye on Ice Loss
18.05.2018 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>