Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Cloud Computing Method Greatly Increases Gene Analysis

Researchers at the Johns Hopkins Bloomberg School of Public Health have developed new software that greatly improves the speed at which scientists can analyze RNA sequencing data.

RNA sequencing is used to compare differences in gene expression to identify those genes that switched on or off when, for instance, a particular disease is present. However, sequencing instruments can produce billions of sequences per day, which can be time-consuming and costly to analyze.

The software, known as Myrna, uses “cloud computing,” an Internet-based method of sharing computer resources. Faster, cost-effective analysis of gene expression could be a valuable tool in understanding the genetic causes of disease. The findings are published in the current edition of the journal Genome Biology. The Myrna software is available for free download at

Cloud computing bundles together the processing power of the individual computers using the Internet. A number of firms with large computing centers including, Amazon and Microsoft, rent unused computers over the Internet for a fee.

“Cloud computing makes economic sense because cloud vendors are very efficient at running and maintaining huge collections of computers. Researchers struggling to keep pace with their sequencing instruments can use the cloud to scale up their analyses while avoiding the headaches associated with building and running their own computer center,” said lead author, Ben Langmead, a research associate in the Bloomberg School’s Department of Biostatistics. “With Myrna, we tried to make it easy for researchers doing RNA sequencing to reap these benefits.”

To test Myrna, Langmead and colleagues Kasper Hansen, PhD, a postdoctoral fellow, and Jeffrey T. Leek, PhD, senior author of the study and assistant professor in the Department of Biostatistics, used the software to process a large collection of publicly available RNA sequencing data. Processing time and storage space were rented from Amazon Web Services. According to the study, Myrna calculated differential expression from 1.1 billion RNA sequencing reads in less than 2 hours at cost of about $66.

“Biological data in many experiments—from brain images to genomic sequences—can now be generated so quickly that it often takes many computers working simultaneously to perform statistical analyses,” said Leeks. “The cloud computing approach we developed for Myrna is one way that statisticians can quickly build different models to find the relevant patterns in sequencing data and connect them to different diseases. Although Myrna is designed to analyze next-generation sequencing reads, the idea of combining cloud computing with statistical modeling may also be useful for other experiments that generate massive amounts of data."

The researchers were supported by grants from Amazon Web Services, the National Institutes of Health and the Johns Hopkins Bloomberg School of Public Health.

Tim Parsons | Newswise Science News
Further information:

More articles from Information Technology:

nachricht Fraunhofer FIT joins Facebook's Telecom Infra Project
25.10.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Stanford researchers create new special-purpose computer that may someday save us billions
21.10.2016 | Stanford University

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>