Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Carnegie Mellon student uses skin as input for mobile devices

07.04.2010
A combination of simple bio-acoustic sensors and some sophisticated machine learning makes it possible for people to use their fingers or forearms — potentially, any part of their bodies — as touchpads to control smart phones or other mobile devices.

The technology, called Skinput, was developed by Chris Harrison, a third-year Ph.D. student in Carnegie Mellon University's Human-Computer Interaction Institute (HCII), along with Desney Tan and Dan Morris of Microsoft Research. Harrison will describe the technology in a paper to be presented on Monday, April 12, at CHI 2010, the Association for Computing Machinery's annual Conference on Human Factors in Computing Systems in Atlanta, Ga.

Skinput, www.chrisharrison.net/projects/skinput/, could help people take better advantage of the tremendous computing power now available in compact devices that can be easily worn or carried. The diminutive size that makes smart phones, MP3 players and other devices so portable, however, also severely limits the size and utility of the keypads, touchscreens and jog wheels typically used to control them.

"With Skinput, we can use our own skin — the body's largest organ — as an input device," Harrison said "It's kind of crazy to think we could summon interfaces onto our bodies, but it turns out to make a lot of sense. Our skin is always with us, and makes the ultimate interactive touch surface"

In a prototype developed while Harrison was an intern at Microsoft Research last summer, acoustic sensors are attached to the upper arm. These sensors capture sound generated by such actions as flicking or tapping fingers together, or tapping the forearm. This sound is not transmitted through the air, but by transverse waves through the skin and by longitudinal, or compressive, waves through the bones.

Harrison and his colleagues found that the tap of each fingertip, a tap to one of five locations on the arm, or a tap to one of 10 locations on the forearm produces a unique acoustic signature that machine learning programs could learn to identify. These computer programs, which improve with experience, were able to determine the signature of each type of tap by analyzing 186 different features of the acoustic signals, including frequencies and amplitude.

In a trial involving 20 subjects, the system was able to classify the inputs with 88 percent accuracy overall. Accuracy depended in part on proximity of the sensors to the input; forearm taps could be identified with 96 percent accuracy when sensors were attached below the elbow, 88 percent accuracy when the sensors were above the elbow. Finger flicks could be identified with 97 percent accuracy.

"There's nothing super sophisticated about the sensor itself," Harrison said, "but it does require some unusual processing. It's sort of like the computer mouse — the device mechanics themselves aren't revolutionary, but are used in a revolutionary way." The sensor is an array of highly tuned vibration sensors — cantilevered piezo films.

The prototype armband includes both the sensor array and a small projector that can superimpose colored buttons onto the wearer's forearm, which can be used to navigate through menus of commands. Additionally, a keypad can be projected on the palm of the hand. Simple devices, such as MP3 players, might be controlled simply by tapping fingertips, without need of superimposed buttons; in fact, Skinput can take advantage of proprioception — a person's sense of body configuration — for eyes-free interaction.

Though the prototype is of substantial size and designed to fit the upper arm, the sensor array could easily be miniaturized so that it could be worn much like a wristwatch, Harrison said.

Testing indicates the accuracy of Skinput is reduced in heavier, fleshier people and that age and sex might also affect accuracy. Running or jogging also can generate noise and degrade the signals, the researchers report, but the amount of testing was limited and accuracy likely would improve as the machine learning programs receive more training under such conditions.

Harrison, who delights in "blurring the lines between technology and magic," is a prodigious inventor. Last year, he launched a company, Invynt LLC, to market a technology he calls "Lean and Zoom," which automatically magnifies the image on a computer monitor as the user leans toward the screen. He also has developed a technique to create a pseudo-3D experience for video conferencing using a single webcam at each conference site. Another project explored how touchscreens can be enhanced with tactile buttons that can change shape as virtual interfaces on the touchscreen change.

Skinput is an extension of an earlier invention by Harrison called Scratch Input, which used acoustic microphones to enable users to control cell phones and other devices by tapping or scratching on tables, walls or other surfaces.

"Chris is a rising star," said Scott Hudson, HCII professor and Harrison's faculty adviser. "Even though he's a comparatively new Ph.D. student, the very innovative nature of his work has garnered a lot of attention both in the HCI research community and beyond."

The HCII is a unit of Carnegie Mellon's School of Computer Science, one of the world's leading centers for computer science research and education. Follow the School of Computer Science on Twitter @SCSatCMU.

About Carnegie Mellon: Carnegie Mellon (www.cmu.edu) is a private, internationally ranked research university with programs in areas ranging from science, technology and business, to public policy, the humanities and the fine arts. More than 11,000 students in the university's seven schools and colleges benefit from a small student-to-faculty ratio and an education characterized by its focus on creating and implementing solutions for real problems, interdisciplinary collaboration and innovation. A global university, Carnegie Mellon's main campus in the United States is in Pittsburgh, Pa. It has campuses in California's Silicon Valley and Qatar, and programs in Asia, Australia and Europe. The university is in the midst of a $1 billion fundraising campaign, titled "Inspire Innovation: The Campaign for Carnegie Mellon University," which aims to build its endowment, support faculty, students and innovative research, and enhance the physical campus with equipment and facility improvements.

Byron Spice | EurekAlert!
Further information:
http://www.cs.cmu.edu

Further reports about: HCII MP3 Science TV Silicon Valley Skinput cell phone smart phone tapping finger

More articles from Information Technology:

nachricht UT professor develops algorithm to improve online mapping of disaster areas
29.11.2016 | University of Tennessee at Knoxville

nachricht New standard helps optical trackers follow moving objects precisely
23.11.2016 | National Institute of Standards and Technology (NIST)

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>