Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Carnegie Mellon student uses skin as input for mobile devices

07.04.2010
A combination of simple bio-acoustic sensors and some sophisticated machine learning makes it possible for people to use their fingers or forearms — potentially, any part of their bodies — as touchpads to control smart phones or other mobile devices.

The technology, called Skinput, was developed by Chris Harrison, a third-year Ph.D. student in Carnegie Mellon University's Human-Computer Interaction Institute (HCII), along with Desney Tan and Dan Morris of Microsoft Research. Harrison will describe the technology in a paper to be presented on Monday, April 12, at CHI 2010, the Association for Computing Machinery's annual Conference on Human Factors in Computing Systems in Atlanta, Ga.

Skinput, www.chrisharrison.net/projects/skinput/, could help people take better advantage of the tremendous computing power now available in compact devices that can be easily worn or carried. The diminutive size that makes smart phones, MP3 players and other devices so portable, however, also severely limits the size and utility of the keypads, touchscreens and jog wheels typically used to control them.

"With Skinput, we can use our own skin — the body's largest organ — as an input device," Harrison said "It's kind of crazy to think we could summon interfaces onto our bodies, but it turns out to make a lot of sense. Our skin is always with us, and makes the ultimate interactive touch surface"

In a prototype developed while Harrison was an intern at Microsoft Research last summer, acoustic sensors are attached to the upper arm. These sensors capture sound generated by such actions as flicking or tapping fingers together, or tapping the forearm. This sound is not transmitted through the air, but by transverse waves through the skin and by longitudinal, or compressive, waves through the bones.

Harrison and his colleagues found that the tap of each fingertip, a tap to one of five locations on the arm, or a tap to one of 10 locations on the forearm produces a unique acoustic signature that machine learning programs could learn to identify. These computer programs, which improve with experience, were able to determine the signature of each type of tap by analyzing 186 different features of the acoustic signals, including frequencies and amplitude.

In a trial involving 20 subjects, the system was able to classify the inputs with 88 percent accuracy overall. Accuracy depended in part on proximity of the sensors to the input; forearm taps could be identified with 96 percent accuracy when sensors were attached below the elbow, 88 percent accuracy when the sensors were above the elbow. Finger flicks could be identified with 97 percent accuracy.

"There's nothing super sophisticated about the sensor itself," Harrison said, "but it does require some unusual processing. It's sort of like the computer mouse — the device mechanics themselves aren't revolutionary, but are used in a revolutionary way." The sensor is an array of highly tuned vibration sensors — cantilevered piezo films.

The prototype armband includes both the sensor array and a small projector that can superimpose colored buttons onto the wearer's forearm, which can be used to navigate through menus of commands. Additionally, a keypad can be projected on the palm of the hand. Simple devices, such as MP3 players, might be controlled simply by tapping fingertips, without need of superimposed buttons; in fact, Skinput can take advantage of proprioception — a person's sense of body configuration — for eyes-free interaction.

Though the prototype is of substantial size and designed to fit the upper arm, the sensor array could easily be miniaturized so that it could be worn much like a wristwatch, Harrison said.

Testing indicates the accuracy of Skinput is reduced in heavier, fleshier people and that age and sex might also affect accuracy. Running or jogging also can generate noise and degrade the signals, the researchers report, but the amount of testing was limited and accuracy likely would improve as the machine learning programs receive more training under such conditions.

Harrison, who delights in "blurring the lines between technology and magic," is a prodigious inventor. Last year, he launched a company, Invynt LLC, to market a technology he calls "Lean and Zoom," which automatically magnifies the image on a computer monitor as the user leans toward the screen. He also has developed a technique to create a pseudo-3D experience for video conferencing using a single webcam at each conference site. Another project explored how touchscreens can be enhanced with tactile buttons that can change shape as virtual interfaces on the touchscreen change.

Skinput is an extension of an earlier invention by Harrison called Scratch Input, which used acoustic microphones to enable users to control cell phones and other devices by tapping or scratching on tables, walls or other surfaces.

"Chris is a rising star," said Scott Hudson, HCII professor and Harrison's faculty adviser. "Even though he's a comparatively new Ph.D. student, the very innovative nature of his work has garnered a lot of attention both in the HCI research community and beyond."

The HCII is a unit of Carnegie Mellon's School of Computer Science, one of the world's leading centers for computer science research and education. Follow the School of Computer Science on Twitter @SCSatCMU.

About Carnegie Mellon: Carnegie Mellon (www.cmu.edu) is a private, internationally ranked research university with programs in areas ranging from science, technology and business, to public policy, the humanities and the fine arts. More than 11,000 students in the university's seven schools and colleges benefit from a small student-to-faculty ratio and an education characterized by its focus on creating and implementing solutions for real problems, interdisciplinary collaboration and innovation. A global university, Carnegie Mellon's main campus in the United States is in Pittsburgh, Pa. It has campuses in California's Silicon Valley and Qatar, and programs in Asia, Australia and Europe. The university is in the midst of a $1 billion fundraising campaign, titled "Inspire Innovation: The Campaign for Carnegie Mellon University," which aims to build its endowment, support faculty, students and innovative research, and enhance the physical campus with equipment and facility improvements.

Byron Spice | EurekAlert!
Further information:
http://www.cs.cmu.edu

Further reports about: HCII MP3 Science TV Silicon Valley Skinput cell phone smart phone tapping finger

More articles from Information Technology:

nachricht Deep Learning predicts hematopoietic stem cell development
21.02.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Sensors embedded in sports equipment could provide real-time analytics to your smartphone
16.02.2017 | University of Illinois College of Engineering

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

NASA eyes Pineapple Express soaking California

24.02.2017 | Earth Sciences

New gene for atrazine resistance identified in waterhemp

24.02.2017 | Agricultural and Forestry Science

New Mechanisms of Gene Inactivation may prevent Aging and Cancer

24.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>