Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Breaking the Logjam: Improving Data Download from Outer Space

21.05.2010
Satellites in space keyed to detect nuclear events and environmental gasses currently face a kind of data logjam because their increasingly powerful sensors produce more information than their available bandwidth can easily transmit.

Experiments conducted by Sandia National Laboratories at the International Space Station preliminarily indicate that the problem could be remedied by orbiting more complex computer chips to pre-reduce the large data stream.

But while increased satellite on-board computing capabilities ideally would mean that only the most useful information would be transmitted to Earth, an unresolved question had been how well the latest in computing electronics would fare in the harsh environment of outer space.

The fear had been that high-energy particles might collide with a transistor and, by changing a zero to a one, alter the value of an individual calculation, producing incorrect results in what could be matters of national security or critical environmental calculations.

The Sandia experiments are providing insights into the effects of high-energy radiation on these computing electronics, enabling mitigation of these potentially crippling effects in future processing-architecture designs.

“We’re getting true on-orbit data from a space environment,” said Dave Bullington, Sandia’s lead engineer on the experiment taking place in low Earth orbit. “Data messages are being sent back every four minutes.”

How it works
NASA’s “Materials on the International Space Station Experiment” (MISSE) program, under the direction of the Naval Research Laboratory, provides opportunities for low-risk, quick and inexpensive flight tests of materials and equipment in space aboard the ISS.

MISSE provides suitcase-like containers called Passive Experiment Containers to hold multiple experiments. These are mounted by astronauts on the exterior of the ISS, thus exposing the experiments to the rigors of space.

The seventh in an ongoing series of MISSE flights, MISSE 7 for the first time offered researchers power and data connections provided by the ISS from which to run actively powered experiments.

On Nov. 16, 2009, the space shuttle launched carrying the MISSE 7 equipment and on Nov. 23, astronauts manually deployed these containers on the exterior of the ISS. Sandia has been receiving data from this research payload ever since.

At the heart of these new computing architectures are powerful yet flexible computing chips, configurable to support different missions. These chips are called reconfigurable field-programmable gate arrays (FPGAs).

Since these FPGAs are reconfigurable rather than limited to a predefined architecture, their circuits can be overwritten, somewhat the way a read-write compact disk has more possible uses than a read-only disk. This makes prototyping easier and also permits changing missions on satellites previously designed for other purposes.

Because new generations of FPGAs available from commercial suppliers may not have been fully tested for reliable performance in space, Sandia engineers help validate device performance in a spacelike environment before the devices are integrated into high-consequence operational systems.

Sandia, in a partnership with Xilinx,Inc., designed the SEU Xilinx-Sandia Experiment (SEUXSE) for this opportunity to fly on MISSE 7. SEUs, or single event upsets, refer to electronic changes caused by collisions with a single particle. The U.S. headquarters of Xilinx is in San Jose, Calif.

SEUXSE contains space-qualified Virtex 4 FPGA and a nonspace qualified Virtex 5 FPGA from Xilinx. Converting the ISS power to levels compatible with the Virtex devices are Sandia designed power converters known as point-of-load (POL) converters.

The POL design for SEUXSE is the first time these efficient, high-quality power converters have been used in space.

Special algorithms were developed and programmed into both of these Virtex FPGAs to detect and report particle-induced errors while the FPGAs were running typical satellite data processing tasks.

With the data collected from this platform, researchers in future Sandia programs will know exactly how these FPGAs and POL converters perform in the space environment and how to design mitigation approaches into these processing routines to account for upsets encountered in space.

A second experiment called SEUXSE II, featuring even more recent computing components, has already been prepared to lift off on a future shuttle flight as part of MISSE 8.

For SEUXSE II, Sandia researchers replaced the nonspace-qualified version of the Virtex 5 from Xilinx with an early release version of the space-qualified Virtex 5.

“Fortunately,” said Sandia SEUXSE researcher Jeff Kalb, “the new Virtex 5 from Xilinx had a compatible footprint to the previous Virtex 5 and we could leverage the hardware that was designed for MISSE 7.”

MISSE 8 is expected to launch on the space shuttle in July 2010.

When it is deployed on the ISS, it will replace the MISSE 7 Passive Experiment Containers, which will be returned to earth on the shuttle, allowing Sandia researchers to analyze SEUXSE hardware after being in orbit.

Sandia is the first to put these versions of the Virtex technology into orbit. These FPGAs and POL converters are expected to become the heart of future processing architectures for the Department of Energy and the National Nuclear Security Administration, which oversee Sandia.

MISSE-7 also is flying the Sandia Passive ISS Research Experiments (SPIRE). These tests passively expose a variety of materials and devices to the harsh space environment. Upon return to ground, they will be tested to determine if degradation has occurred due to synergistic factors such as ionizing radiation, UV exposure, thermal cycling, micrometeorite impacts and vacuum effects.

Radiation-shielding structural composites, doped laser fibers, pure tin finished parts, microelectromechanical systems (MEMs) latching impact sensors, and gallium-arsenide photodiodes are some of the 15 Sandia passive experiments that make up SPIRE.

Sandia, through the support of the NNSA’s Space Nuclear Detonation Detection (SNDD) Program office, developed SEUXSE and SPIRE in an 18-month period for a cost that was one-fifth that of other comparable experiments. SEUXSE II was then delivered in one-third the time and cost of the original SEUXSE.

Sandia National Laboratories is a multiprogram laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin, for the U.S. Department of Energy’s National Nuclear Security Administration. With main facilities in Albuquerque, N.M., and Livermore, Calif., Sandia has major R&D responsibilities in national security, energy and environmental technologies, and economic competitiveness.

| Newswise Science News
Further information:
http://www.sandia.gov

More articles from Information Technology:

nachricht Terahertz spectroscopy goes nano
20.10.2017 | Brown University

nachricht New software speeds origami structure designs
12.10.2017 | Georgia Institute of Technology

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>