Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

'Bending current' opens up the way for a new type of magnetic memory

04.03.2016

Eindhoven physicists describe energy-efficient MRAM in Nature Communications

Use your computer without the need to start it up: a new type of magnetic memory makes it possible. This 'MRAM' is faster, more efficient and robust than other kinds of data storage. However, switching bits still requires too much electrical power to make large-scale application practicable. Researchers at Eindhoven University of Technology (TU/e) have discovered a smart way of solving this problem by using a 'bending current'. They publish their findings today in the journal Nature Communications.


This image shows the experimental chip the researchers used for their measurements.

Credit: Arno van den Brink / Eindhoven University of Technology

MRAM (Magnetic Random Access Memory) stores data by making smart use of the 'spin' of electrons, a kind of internal compass of the particles. Since magnetism is used instead of an electrical charge, the memory is permanent, even when there is a power failure, and so the computer no longer has to be started up. These magnetic memories also use much less power, which means that mobile phones, for example, can run longer on a battery.

Flipover

In a MRAM bits are projected by the direction of the spin of the electrons in a piece of magnetic material: for example, upwards for a '1' and downwards for a '0'. The storage of data occurs by flipping the spin of the electrons over to the correct side. Normal practice is to send an electrical current which contains electrons with the required spin direction through the bit. The large quantity of electrical current needed to do this hindered a definitive breakthrough for MRAM, which appeared on the market for the first time in 2006.

Bending current

In Nature Communications a group of TU/e physicists, led by professor Henk Swagten, today publishes a revolutionary method to flip the magnetic bits faster and more energy-efficiently. A current pulse is sent under the bit, which bends the electrons at the correct spin upwards, so through the bit. "It's a bit like a soccer ball that is kicked with a curve when the right effect is applied," says Arno van den Brink, TU/e PhD student and the first author of the article.

Frozen

The new memory is really fast but it needs something extra to make the flipping reliable. Earlier attempts to do this required a magnetic field but that made the method expensive and inefficient. The researchers have solved this problem by applying a special anti-ferromagnetic material on top of the bits. This enables the requisite magnetic field to be frozen, as it were, energy-efficient and low cost. "This could be the decisive nudge in the right direction for superfast MRAM in the near future," according to Van den Brink.

Media Contact

Henk Swagten
H.J.M.Swagten@tue.nl
31-631-947-994

 @TUEindhoven

http://www.tue.nl/en 

Henk Swagten | EurekAlert!

More articles from Information Technology:

nachricht UT professor develops algorithm to improve online mapping of disaster areas
29.11.2016 | University of Tennessee at Knoxville

nachricht New standard helps optical trackers follow moving objects precisely
23.11.2016 | National Institute of Standards and Technology (NIST)

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>