Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

ASTRA: Atmospheric Science Through Robotic Aircraft

31.03.2011
ASTRA investigates new technologies for making low cost observations of the physical parameters of the atmosphere. We develop and test platforms capable of delivering scientific instruments to altitudes ranging from the planetary boundary layer (hundreds of meters) to the upper stratosphere (up to 50km).

The use of fleets of light, unmanned aircraft, makes extensive studies more affordable, even when payloads need to be delivered to extreme altitudes. It also enables applications where the deployment of manned aircraft is impractical, such as when observations need to be made in highly polluted environments (e.g., volcanic ash clouds) or extreme weather conditions.


Exploring Earth's atmosphere using high altitude unmanned instrument platforms

The challenges of developing such system are of a highly multi-disciplinary nature, involving:

Aircraft design: the aircraft have to be able to operate in the harsh, low pressure, low density environment of the upper stratosphere, as well as in the dense and turbulent lower troposphere. Additionally, weight and power requirements of all on-board systems have to be minimized. The need to keep weight and cost to a minimum demands novel manufacturing technologies too.

... more about:
»Aircraft »Atmospheric »Robotic

Flight physics: efficient sampling of atmospheric parameters requires very careful design of the trajectories and flight control algorithms of the aircraft. This is an especially pressing requirement if unpowered gliders are used.

Software systems engineering: the real-time, often computationally intensive ground-based processing of large amounts of data collected by the sensors on board the aircraft is made especially challenging by the difficulties of data download from very high altitude platforms with low powered transmitters.

For more information, please email A. Sóbester, S. Johnston or J. P. Scanlan.

Glenn Harris | EurekAlert!
Further information:
http://www.soton.ac.uk

Further reports about: Aircraft Atmospheric Robotic

More articles from Information Technology:

nachricht Deep Learning predicts hematopoietic stem cell development
21.02.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Sensors embedded in sports equipment could provide real-time analytics to your smartphone
16.02.2017 | University of Illinois College of Engineering

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>