Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

'Data Motion Metric' Needed for Supercomputer Rankings, Says SDSC's Snavely

11.08.2011
As we enter the era of data-intensive research and supercomputing, the world’s top computer systems should not be ranked on calculation speed alone, according to Allan Snavely, associate director of the San Diego Supercomputer Center (SDSC) at the University of California, San Diego.

“I’d like to propose that we routinely compare machines using the metric of data motion capacity, or their ability to move data quickly,” Snavely told attendees of the ‘Get Ready for Gordon – Summer Institute’ being held this week (August 8-11) at SDSC to familiarize potential users with the unique capabilities of SDSC’s new Gordon data-intensive supercomputer.

Gordon, the result of a five-year, $20 million award from the National Science Foundation (NSF), is the first high-performance supercomputer to use large amounts of flash-based SSD (solid state drive) memory. With about 300 trillion bytes of flash memory and 64 I/O nodes, Gordon will be capable of handling massive data bases while providing up to 100 times faster speeds when compared to hard drive disk systems for some queries. Flash memory is more common in smaller devices such as mobile phones and laptop computers, but unique for supercomputers, which generally use slower spinning disk technology.

The system is set to formally enter production on January 1, 2012, although pre-production allocations on some parts of the cluster will start as early as this month for U.S. academic researchers.

“This may be a somewhat heretical notion, but at SDSC we want a supercomputer to be data capable, not just FLOP/S capable,” said Snavely, whom along with many other HPC experts now contend that supercomputers should also be measured by their overall ability to help researchers solve real-world science problems. Snavely’s proposal includes a measurement that weights DRAM, flash memory, and disk capacity according to access time in a compute cycle.

A common term within the supercomputing community, peak speed means the fastest speed at which a supercomputer can calculate. It is typically measured in FLOP/S, which stands for FLoating point OPerations per Second. In lay terms, it basically means peak calculations per second. In June, a Japanese supercomputer capable of performing more than 8 quadrillion calculations per second (petaflop/s) was ranked the top system in the world, putting Japan back in the top spot for the first time since 2004, according the latest edition of the TOP500 List of the world’s supercomputers. The system, called the K Computer, is at the RIKEN Advanced Institute for Computational Science (AICS) in Kobe, Japan, and replaced China's Tianhe-1A system as the fastest supercomputer in the rankings, which has been using this metric since 1993.

“Everyone says we are literally drowning in data, but here are some simple technical reasons,” said Snavely. “The number of cycles for computers to access data is getting longer – in fact disks are getting slower all the time as their capacity goes up but access times stay the same. It now takes twice as long to examine a disk every year, or put another way, this doubling of capacity halves the accessibility to any random data on a given media.

“That’s a pernicious outcome for Moore’s Law,” he said, noting that as the number of cycles for computers to access data gets longer, some large-scale systems are just “spending time twiddling their thumbs.”
Media Contacts:
Jan Zverina, SDSC Communications, 858 534-5111 or jzverina@sdsc.edu
Warren R. Froelich, SDSC Communications, 858 822-3622 or froelich@sdsc.edu

Jan Zverina | EurekAlert!
Further information:
http://www.sdsc.edu

More articles from Information Technology:

nachricht Drones that drive
27.06.2017 | Massachusetts Institute of Technology, CSAIL

nachricht Ahead of the Curve
27.06.2017 | Institute of Science and Technology Austria

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Touch Displays WAY-AX and WAY-DX by WayCon

27.06.2017 | Power and Electrical Engineering

Drones that drive

27.06.2017 | Information Technology

Ultra-compact phase modulators based on graphene plasmons

27.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>