Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

50 years of Brown Dwarfs

19.10.2012
The community of astronomers is celebrating an amazing discovery with an international conference at Ringberg Castle nearby the Tegernsee in Germany from October 21.-24. The conference is organized by the Max Planck Institute for Astronomy in Heidelberg.

Exactly 50 years ago Shiv Kumar has theoretically predicted the existence of Brown Dwarfs, which are the link between stars and planets. It took another 30 years until these exotic objects were actually detected by observations. The origin of these mysterious objects is still not fully understood.


A disk around a young Brown Dwarf - which ejects a Jet - similar to young recently born stars (artificial image). Axel M. Quetz, MPIA / DSS-2 (Background)

All this is reason enough for renowned experts to meet on October 21.-24. in an international conference at Ringberg Castle nearby the Tegernsee. Present will be Shiv Kumar as well as the discoverers of the first Brown Dwarfs, Ben Oppenheimer, Rafael Rebolo and Gibor Basri.

Brown Dwarfs are often called failed stars because they are too cool too sustain enough nuclear fusion to shine as the sun or other stars. On the other hand, they share many properties with giant planets, such as relatively cool atmospheres in which clouds can form. The exploration of Brown Dwarfs is, therefore, a key to understand both the formation and evolution of planets as well as those of low-mass stars.

Brown dwarfs are cool

The existence of substellar objects, which do not produce enough internal energy to shine steadily for a long time, was predicted by Shiv Kumar in 1962. The term "Brown Dwarf" was proposed in 1975 by Jill Tarter, a researcher now at the SETI Institute. However, the actual color of Brown Dwarfs is rather red or magenta. Therefore, Brown Dwarfs are not only very faint, but also radiate mainly in infrared light. It required enormous technical advancements particularly in the field of infrared detectors, to allow their discovery in the mid 90s.

One of the first Brown Dwarfs discovered, Teide 1, appeared in 1994 as an unusual red object in the camera of Rafael Rebolo of the Instituto de Astrofísica de Canarias and has been confirmed by Gibor Basri as a young Brown Dwarf. An even cooler object was found in the same year by Ben Oppenheimer and Tadashi Nakajima with the Hubble Space Telescope. They were able to even detect methane in the atmosphere of this companion of the star Gl229.

The clouds that can form in the cool atmospheres of Brown Dwarfs, can consist of e.g. iron instead of water as on earth, as Christiane Helling and Mark Marley show in their model calculations. Last year, a group of astronomers around Mike Cushing has discovered the first so-called Y-Dwarfs with the WISE-satellite. With temperatures below 300 degrees, they are the coldest, free floating celestial objects detected so far.

Origin is a mystery

Due to their low mass, a star-like formation by the gravitational collapse of gas and dust clouds is not easy to explain. Nevertheless, such a scenario seems possible to some researchers. One of many alternative formation scenarios is the ejection of "stellar embryos" out of their birth place before they can grow up to real stars.

"Some observations actually indicate a star-like formation. For example, the discovery of Brown Dwarfs that have been formed in isolation or very wide Brown Dwarf binaries - both cases which do not hint at strong dynamical interactions. Furthermore, young Brown Dwarfs were found to be surrounded by disks and to drive jets and outflows – similar to young stars", explain Viki Joergens and Thomas Henning from the Max Planck Institute for Astronomy in Heidelberg (MPIA). Their team detected this years for the first time such disks at submillimeter wavelengths with the Herschel Space Telescope and also found jets with the ESOs VLT Observatory. Such disks have been also seen in the millimeter regime with ESOs ALMA Observatory by a team including Leonardi Testi.

The conference organized by Viki Joergens and Thomas Henning from MPIA entitled "50 Years of Brown Dwarfs" will provide a lively exchange between observers and theorists, and will bring together many of the world's most renowned experts working in that field.

Contact:

Dr. Viki Joergens
viki@mpia.de
Tel.: 06221 - 528 464
Tel. during the conference: 01573 - 724 2308
Prof. Dr. Thomas Henning
henning@mpia.de
Tel.: 06221 – 528 201
Dr. Klaus Jäger
jaeger@mpia.de
Tel.: 06221 – 528 379
Dr. Markus Pössel
poessel@mpia.de
Tel.: 06221 – 528 216
Further information
Brown Dwarfs have a mass of less than 75 Jupiter masses (Jupiter is the largest planet in our solar system). This means that their mass is less than one tenth of a solar mass. With a surface temperature of less than 300 to 2500°C, they are much cooler than the sun which has a surface temperature of 5500°C.

The size of Brown Dwarfs is determined by quantum mechanical effects and is about one Jupiter radius, when they have passed their "adolescence". Despite their name they are not really brown, but rather red or magenta.

How brown dwarfs form is still one of the main open questions in the theory of star formation. A key role to answer this question play brown dwarfs as members of binary and multiple systems. Steadily improving instrumental performance led to the discovery of companions around brown dwarfs down to planetary masses, to size (radii) and dynamical mass determinations, and to statistically significant samples of very low-mass binaries. These detailed empirical characterizations of brown dwarfs enable us to test and calibrate increasingly sophisticated models of internal structure, atmosphere, and formation of substellar objects.

There is evidence that even among the coldest Brown Dwarfs, called T-and Y-Dwarfs, binary systems were found. Their discovery might be published during this conference.

Dr. Klaus Jäger, Dr. Markus Pössel | Max-Planck-Institut
Further information:
http://www.mpia.de/homes/joergens/ringberg2012.html

More articles from Event News:

nachricht Networking conference in Heidelberg for outstanding mathematicians and computer scientists
20.08.2015 | Heidelberg Laureate Forum Foundation

nachricht Scientists meet in Münster for the world’s largest Chitin und Chitosan Conference
20.08.2015 | Westfälische Wilhelms-Universität Münster

All articles from Event News >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: OU astrophysicist and collaborators find supermassive black holes in quasar nearest Earth

A University of Oklahoma astrophysicist and his Chinese collaborator have found two supermassive black holes in Markarian 231, the nearest quasar to Earth, using observations from NASA's Hubble Space Telescope.

The discovery of two supermassive black holes--one larger one and a second, smaller one--are evidence of a binary black hole and suggests that supermassive...

Im Focus: What would a tsunami in the Mediterranean look like?

A team of European researchers have developed a model to simulate the impact of tsunamis generated by earthquakes and applied it to the Eastern Mediterranean. The results show how tsunami waves could hit and inundate coastal areas in southern Italy and Greece. The study is published today (27 August) in Ocean Science, an open access journal of the European Geosciences Union (EGU).

Though not as frequent as in the Pacific and Indian oceans, tsunamis also occur in the Mediterranean, mainly due to earthquakes generated when the African...

Im Focus: Self-healing landscape: landslides after earthquake

In mountainous regions earthquakes often cause strong landslides, which can be exacerbated by heavy rain. However, after an initial increase, the frequency of these mass wasting events, often enormous and dangerous, declines, in fact independently of meteorological events and aftershocks.

These new findings are presented by a German-Franco-Japanese team of geoscientists in the current issue of the journal Geology, under the lead of the GFZ...

Im Focus: FIC Proteins Send Bacteria Into Hibernation

Bacteria do not cease to amaze us with their survival strategies. A research team from the University of Basel's Biozentrum has now discovered how bacteria enter a sleep mode using a so-called FIC toxin. In the current issue of “Cell Reports”, the scientists describe the mechanism of action and also explain why their discovery provides new insights into the evolution of pathogens.

For many poisons there are antidotes which neutralize their toxic effect. Toxin-antitoxin systems in bacteria work in a similar manner: As long as a cell...

Im Focus: Fraunhofer IPA develops prototype of intelligent care cart

It comes when called, bringing care utensils with it and recording how they are used: Fraunhofer IPA is developing an intelligent care cart that provides care staff with physical and informational support in their day-to-day work. The scientists at Fraunhofer IPA have now completed a first prototype. In doing so, they are continuing in their efforts to improve working conditions in the care sector and are developing solutions designed to address the challenges of demographic change.

Technical assistance systems can improve the difficult working conditions in residential nursing homes and hospitals by helping the staff in their work and...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking conference in Heidelberg for outstanding mathematicians and computer scientists

20.08.2015 | Event News

Scientists meet in Münster for the world’s largest Chitin und Chitosan Conference

20.08.2015 | Event News

Large agribusiness management strategies

19.08.2015 | Event News

 
Latest News

Interstellar seeds could create oases of life

28.08.2015 | Physics and Astronomy

An ounce of prevention: Research advances on 'scourge' of transplant wards

28.08.2015 | Health and Medicine

Fish Oil-Diet Benefits May be Mediated by Gut Microbes

28.08.2015 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>