Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Where did the Deepwater Horizon oil go? To Davy Jones' Locker at the bottom of the sea

28.10.2014

New analysis traces oil to its resting place on the Gulf of Mexico sea floor

Where's the remaining oil from the 2010 Deepwater Horizon disaster in the Gulf of Mexico?


Oil remains in the Gulf of Mexico more than four years after the Deepwater Horizon spill.

Credit: Wikimedia Commons

The location of 2 million barrels of oil thought to be trapped in the deep ocean has remained a mystery. Until now.

Scientist David Valentine of the University of California, Santa Barbara (UCSB) and colleagues from the Woods Hole Oceanographic Institution (WHOI) and the University of California, Irvine, have discovered the path the oil followed to its resting place on the Gulf of Mexico sea floor.

... more about:
»Deepwater Horizon »NSF »Oil »Sciences »UCSB »WHOI »sea floor

The findings appear today in the journal Proceedings of the National Academy of Sciences.

"This analysis provides us with, for the first time, some closure on the question, 'Where did the oil go and how did it get there?'" said Don Rice, program director in the National Science Foundation's (NSF) Division of Ocean Sciences, which funded the research along with NSF's Division of Earth Sciences.

"It also alerts us that this knowledge remains largely provisional until we can fully account for the remaining 70 percent."

For the study, the scientists used data from the Natural Resource Damage Assessment conducted by the National Oceanic and Atmospheric Administration.

The U.S. government estimates the Macondo Well's total discharge--from April until the well was capped in July--at 5 million barrels.

By analyzing data from more than 3,000 samples collected at 534 locations over 12 expeditions, the researchers identified a 1,250-square-mile patch of the sea floor on which four to 31 percent of the oil trapped in the deep ocean was deposited. That's the equivalent of 2 to 16 percent of the total oil discharged during the accident.

The fallout of oil created thin deposits that are most extensive to the southwest of the Macondo Well. The oil is concentrated in the top half-inch of the sea floor and is patchily distributed.

The investigation focused primarily on hopane, a nonreactive hydrocarbon that served as a proxy for the discharged oil.

The researchers analyzed the distribution of hopane in the northern Gulf of Mexico and found that it was concentrated in a thin layer at the sea floor within 25 miles of the ruptured well, clearly implicating Deepwater Horizon as the source.

"Based on the evidence, our findings suggest that these deposits are from Macondo oil that was first suspended in the deep ocean, then settled to the sea floor without ever reaching the ocean surface," said Valentine, a biogeochemist at UCSB.

"The pattern is like a shadow of the tiny oil droplets that were initially trapped at ocean depths around 3,500 feet and pushed around by the deep currents.

"Some combination of chemistry, biology and physics ultimately caused those droplets to rain down another 1,000 feet to rest on the sea floor."

Valentine and colleagues were able to identify hotspots of oil fallout in close proximity to damaged deep-sea corals.

According to the researchers, the data support the previously disputed finding that these corals were damaged by the Deepwater Horizon spill.

"The evidence is becoming clear that oily particles were raining down around these deep sea corals, which provides a compelling explanation for the injury they suffered," said Valentine.

"The pattern of contamination we observe is fully consistent with the Deepwater Horizon event but not with natural seeps--the suggested alternative."

While the study examined a specified area, the scientists argue that that the observed oil represents a minimum value. They believe that oil deposition likely occurred outside the study area but so far has largely evaded detection because of its patchiness.

"These findings," said Valentine, "should be useful for assessing the damage caused by the Deepwater Horizon spill, as well as planning future studies to further define the extent and nature of the contamination.

"Our work can also help assess the fate of reactive hydrocarbons, test models of oil's behavior in the ocean, and plan for future spills."

Co-authors of the paper are G. Burch Fisher and Sarah C. Bagby of UCSB; Robert K. Nelson, Christopher M. Reddy and Sean P. Sylva of WHOI and Mary A. Woo of University of California, Irvine.

Media Contacts
Cheryl Dybas, NSF, (703) 292-7734, cdybas@nsf.gov
Julie Cohen, UCSB, (805) 893-7220, julie.cohen@ucsb.edu

Related Websites
NSF News: Study Identifies Source of Oil Sheens Near Deepwater Horizon Site: http://www.nsf.gov/news/news_summ.jsp?cntn_id=128494
NSF News: Gulf Oil Spill: NSF Awards Rapid Response Grant to Study Microbes' Natural Degradation of Oil: http://www.nsf.gov/news/news_summ.jsp?cntn_id=116993
NSF News: Gulf of Mexico Topography Played Key Role in Bacterial Consumption of Deepwater Horizon Spill: http://www.nsf.gov/news/news_summ.jsp?cntn_id=122736
NSF News: Chemical Make-up of Gulf of Mexico Plume Determined: http://www.nsf.gov/news/news_summ.jsp?cntn_id=120962
NSF News: Research Mission Studies Oil Spill Using Autonomous Underwater Vehicle and Mass Spectrometry: http://www.nsf.gov/news/news_summ.jsp?cntn_id=117200
NSF Grant: Collaborative Research: Oxygenation of Hydrocarbons in the Ocean: http://www.nsf.gov/awardsearch/showAward?AWD_ID=1333162&HistoricalAwards=false

The National Science Foundation (NSF) is an independent federal agency that supports fundamental research and education across all fields of science and engineering. In fiscal year (FY) 2014, its budget is $7.2 billion. NSF funds reach all 50 states through grants to nearly 2,000 colleges, universities and other institutions. Each year, NSF receives about 50,000 competitive requests for funding, and makes about 11,500 new funding awards. NSF also awards about $593 million in professional and service contracts yearly.

Cheryl Dybas | Eurek Alert!
Further information:
http://nsf.gov/news/news_summ.jsp?cntn_id=133059&org=NSF&from=news

Further reports about: Deepwater Horizon NSF Oil Sciences UCSB WHOI sea floor

More articles from Ecology, The Environment and Conservation:

nachricht Value from wastewater
16.08.2017 | Hochschule Landshut

nachricht Species Richness – a false friend? Scientists want to improve biodiversity assessments
01.08.2017 | Carl von Ossietzky-Universität Oldenburg

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

New gene catalog of ocean microbiome reveals surprises

18.08.2017 | Life Sciences

Astrophysicists explain the mysterious behavior of cosmic rays

18.08.2017 | Physics and Astronomy

AI implications: Engineer's model lays groundwork for machine-learning device

18.08.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>