Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Warm winters let trees sleep longer

30.10.2013
Climate change alters timing of spring growth in forests

In the temperate zones, vegetation follows the change of the seasons. After a winter pause, plants put out new growth in spring. Research has now brought a new correlation to light: The colder the winter, the earlier native plants begin to grow again.


For their experiments, TUM researchers used twigs around 30 centimeters long from 36 different trees and shrubs, which they exposed to different temperature and light conditions in climate chambers. Each climate chamber experiment lasted six weeks. The twigs came from the "Weltwald" or "World Forest" near Freising, Germany, in which Bavarian state foresters have planted stands of trees from different climate regions.

Credit: Photo by Julia Laube Copyright TU Muenchen

Since warmer winters can be expected as the climate changes, the spring development phase for typical forest trees might start later and later – giving an advantage to shrubs and invasive trees that don't depend on the cold.

In a recently published study, researchers at the Technische Universitaet Muenchen (TUM) investigated 36 tree and shrub species. Their work delivered a surprising result, as lead author Julia Laube explains: "Contrary to previous assumptions, the increasing length of the day in spring plays no big role in the timing of budding. An ample 'cold sleep' is what plants need in order to wake up on time in the spring."

This applies above all to native tree species such as beech and oak, because they rely on resting in the cold to protect themselves from freezing by late spring frosts. A different behavior is observed among pioneer species – including shrubs such as hazel bushes and primary settlers such as birch trees – and among species like locust and walnut that have moved in from warmer climate zones. "These trees take the risk of starting earlier in the spring, because they are less strongly dependent on the cold periods," Laube says, "and in addition they sprout more quickly as temperatures rise."

Advantage for shrubs and new tree species

There may be consequences for the forest ecosystem. After mild winters, the native species run a higher risk of developing their leaves too late. In that case, more daylight reaches the forest floor, and that benefits lower-growing shrubs and invasive tree species. They sprout earlier, to the detriment of native species: Young trees for example, still low to the ground, may not receive the light they need to grow.

"Even under warmer conditions, we won't be seeing 'green Christmases' under freshly blooming trees," says Prof. Annette Menzel, TUM Chair for Ecoclimatology and a fellow of the TUM Institute for Advanced Study. "Nonetheless, the differing growth patterns will affect the entire plant and animal world. The native tree species in our forests have only a limited ability to adapt themselves to climate change."

Shortened winter in the climate chamber

For their experiments, the researchers used twigs around 30 centimeters long from 36 different trees and shrubs, which they exposed to different temperature and light conditions in climate chambers. Each climate chamber experiment lasted six weeks. The twigs came from the "Weltwald" or "World Forest" near Freising, in which Bavarian state foresters have planted stands of trees from different climate regions.

The cold effect showed most strongly with the beeches, the hornbeams, and the North American sugar maple. With shortened cold periods, bud burst occurred significantly later. In contrast, the lilac, the hazel bush, and the birch proved to be less dependent on the cold.

"Overall, however, a chaotic picture emerges," Menzel adds. "Through warmer winters, the usual sequence of leaf development can get completely mixed up. Many of the cultivated species that are at home today in central Europe come originally from warmer climate zones. In the absence of adequate protection against freezing, they could become victims of their own too-flexible adaptation – and freeze to death in a late frost in the spring."

Publication:

Chilling outweighs photoperiod in preventing precocious spring development; Julia Laube, Tim H. Sparks, Nicole Estrella, Josef Höfler, Donna P. Ankerst and Annette Menzel; Global Change Biology (Oct. 30, 2013), doi: 10.1111/gcb.12360

Contact:

Prof. Dr. Annette Menzel
Technische Universitaet Muenchen
Chair of Ecoclimatology
T: +49.8161.71.4740
E: amenzel@wzw.tum.de
W: http://www.oekoklimatologie.wzw.tum.de
Technische Universitaet Muenchen (TUM) is one of Europe's leading research universities, with around 500 professors, 10,000 academic and non-academic staff, and 35,000 students. Its focus areas are the engineering sciences, natural sciences, life sciences and medicine, reinforced by schools of management and education. TUM acts as an entrepreneurial university that promotes talents and creates value for society. In that it profits from having strong partners in science and industry. It is represented worldwide with a campus in Singapore as well as offices in Beijing, Brussels, Cairo, Mumbai, and São Paulo. Nobel Prize winners and inventors such as Rudolf Diesel and Carl von Linde have done research at TUM. In 2006 and 2012 it won recognition as a German "Excellence University." In international rankings, TUM regularly places among the best universities in Germany.

Barbara Wankerl | EurekAlert!
Further information:
http://www.tum.de

More articles from Ecology, The Environment and Conservation:

nachricht Safeguarding sustainability through forest certification mapping
27.06.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht Dune ecosystem modelling
26.06.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Touch Displays WAY-AX and WAY-DX by WayCon

27.06.2017 | Power and Electrical Engineering

Drones that drive

27.06.2017 | Information Technology

Ultra-compact phase modulators based on graphene plasmons

27.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>