Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


How vegetation competes for rainfall in dry regions

The greater the plant density in a given area, the greater the amount of rainwater that seeps into the ground. This is due to a higher presence of dense roots and organic matter in the soil. Since water is a limited resource in many dry ecosystems, such as semi-arid environments and semi-deserts, there is a benefit to vegetation to adapt by forming closer networks with little space between plants.

Hence, vegetation in semi-arid environments (or regions with low rainfall) self-organizes into patterns or “bands.” The pattern formation occurs where stripes of vegetation run parallel to the contours of a hill, and are interlaid with stripes of bare ground. Banded vegetation is common where there is low rainfall. In a paper published last month in the SIAM Journal on Applied Mathematics, author Jonathan A. Sherratt uses a mathematical model to determine the levels of precipitation within which such pattern formation occurs.

Desert steppes in Yol Valley in Mongolia. Photo Credit: Christineg (Source: Dreamstime)

“Vegetation patterns are a common feature in semi-arid environments, occurring in Africa, Australia and North America,” explains Sherratt. “Field studies of these ecosystems are extremely difficult because of their remoteness and physical harshness; moreover there are no laboratory replicates. Therefore mathematical modeling has the potential to be an extremely valuable tool, enabling prediction of how pattern vegetation will respond to changes in external conditions.”

Several mathematical models have attempted to address banded vegetation in semi-arid environments, of which the oldest and most established is a system of partial differential equations, called the Klausmeier model.

The Klausmeier model is based on a water redistribution hypothesis, which assumes that rain falling on bare ground infiltrates only slightly; most of it runs downhill in the direction of the next vegetation band. It is here that rain water seeps into the soil and promotes growth of new foliage. This implies that moisture levels are higher on the uphill edge of the bands. Hence, as plants compete for water, bands move uphill with each generation. This uphill migration of bands occurs as new vegetation grows upslope of the bands and old vegetation dies on the downslope edge.

In this paper, the author uses the Klausmeier model, which is a system of reaction-diffusion-advection equations, to determine the critical rainfall level needed for pattern formation based on a variety of ecological parameters, such as rainfall, evaporation, plant uptake, downhill flow, and plant loss. He also investigates the uphill migration speeds of the bands. “My research focuses on the way in which patterns change as annual rainfall varies. In particular, I predict an abrupt shift in pattern formation as rainfall is decreased, which dramatically affects ecosystems,” says Sherratt. “The mathematical analysis enables me to derive a formula for the minimum level of annual rainfall for which banded vegetation is viable; below this, there is a transition to complete desert.”

The model has value in making resource decisions and addressing environmental concerns. “Since many semi-arid regions with banded vegetation are used for grazing and/or timber, this prediction has significant implications for land management,” Sherratt says. “Another issue for which mathematical modeling can be of value is the resilience of patterned vegetation to environmental change. This type of conclusion raises the possibility of using mathematical models as an early warning system that catastrophic changes in the ecosystem are imminent, enabling appropriate action (such as reduced grazing).”

The simplicity of the model allows the author to make detailed predictions, but more realistic models are required to further this work. “All mathematical models are a compromise between the complexity needed to adequately reflect real-world phenomena, and the simplicity that enables the application of mathematical methods. My paper concerns a relatively simple model for vegetation patterning, and I have been able to exploit this simplicity to obtain detailed mathematical predictions,” explains Sherratt. “A number of other researchers have proposed more realistic (and more complex) models, and corresponding study of these models is an important area for future work. The mathematical challenges are considerable, but the rewards would be great, with the potential to predict things such as critical levels of annual rainfall with a high degree of quantitative accuracy.”

With 2013 being the year of “Mathematics of Planet Earth (MPE),” mathematics departments and societies across the world are highlighting the role of the mathematical sciences in the scientific effort to understand and deal with the multifaceted challenges facing our planet and our civilization. “The wider field of mathematical modeling of ecosystem-level phenomena has the potential to make a major and quite unique contribution to our understanding of our planet,” says Sherratt.

Source Article:

Pattern Solutions of the Klausmeier Model for Banded Vegetation in Semi-arid Environments V: The Transition from Patterns to Desert

Jonathan A. Sherratt

SIAM Journal on Applied Mathematics, 73 (4), 1347–1367 (Online publish date: July 3, 2013).

The paper will be available for free access at the link above from September 4 – December 4, 2013.

About the author:

Jonathan A. Sherratt is a professor in the Department of Mathematics at Heriot-Watt University, and at Maxwell Institute for Mathematical Sciences in Edinburgh, United Kingdom.

About SIAM

The Society for Industrial and Applied Mathematics (SIAM), headquartered in Philadelphia, Pennsylvania, is an international society of over 14,000 individual members, including applied and computational mathematicians and computer scientists, as well as other scientists and engineers. Members from 85 countries are researchers, educators, students, and practitioners in industry, government, laboratories, and academia. The Society, which also includes nearly 500 academic and corporate institutional members, serves and advances the disciplines of applied mathematics and computational science by publishing a variety of books and prestigious peer-reviewed research journals, by conducting conferences, and by hosting activity groups in various areas of mathematics. SIAM provides many opportunities for students including regional sections and student chapters.

Karthika Muthukumaraswamy | EurekAlert!
Further information:

More articles from Ecology, The Environment and Conservation:

nachricht Dispersal of Fish Eggs by Water Birds – Just a Myth?
19.02.2018 | Universität Basel

nachricht Removing fossil fuel subsidies will not reduce CO2 emissions as much as hoped
08.02.2018 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>