Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tile drainage directly related to nitrate loss

28.09.2010
Tile drainage in the Mississippi Basin is one of the great advances of the 19th and 20th centuries, allowing highly productive agriculture in what was once land too wet to farm. In fact, installation of new tile systems continues every year, because it leads to increased crop yields.

But a recent study shows that the most heavily tile-drained areas of North America are also the largest contributing source of nitrate to the Gulf of Mexico, leading to seasonal hypoxia. In the summer of 2010 this dead zone in the Gulf spanned over 7,000 square miles.

Scientists from the U of I and Cornell University compiled information on each county in the Mississippi River basin including crop acreage and yields, fertilizer inputs, atmospheric deposition, number of people, and livestock to calculate all nitrogen inputs and outputs from 1997 to 2006. For 153 watersheds in the basin, they also used measurements of nitrate concentration and flow in streams, which allowed them to develop a statistical model that explained 83 percent of the variation in springtime nitrate flow in the monitored streams. The greatest nitrate loss to streams corresponded to the highly productive, tile-drained cornbelt from southwest Minnesota across Iowa, Illinois, Indiana, and Ohio.

This area of the basin has extensive row cropping of fertilized corn and soybeans, a flat landscape with tile drainage, and channelized ditches and streams to facilitate drainage.

"Farmers are not to blame," said University of Illinois researcher Mark David. "They are using the same amount of nitrogen as they were 30 years ago and getting much higher corn yields, but we have created a very leaky agricultural system. This allows nitrate to move quickly from fields into ditches and on to the Gulf of Mexico. We need policies that reward farmers to help correct the problem."

David is a biogeochemist who has been studying the issue since 1993. "We've had data from smaller watersheds for some time, but this new study includes data from the entire Mississippi Basin. It shows clearly where across the entire basin the sources of nitrate are.

"A lot of people just want to blame fertilizer, but it's not that simple," David said. "It's fertilizer on intensive corn and soybean agricultural rotations in heavily tile-drained areas. There is also an additional source of nitrogen from sewage effluent from people, although that is a small contribution. It's all of these factors together."

David said that ripping out all of the drainage tiles is not a viable option. "Creating wetlands and reservoirs such as Lake Shelbyville can remove nitrate by holding the water back and letting natural processes remove it, but that's not a solution. It's expensive and we can't flood everyone's land to stop nitrate. That's not going to happen."

"The problem is correctable but will take a concerted effort to change the outcome, with some of the solutions expensive. Installing small wetlands or bioreactors at the end of tile lines that remove nitrates before they flow into the ditch do work, but would cost thousands of dollars per drain. Who's going to pay for that?" David said.

Cover crops can hold the nutrients so they are available in the spring, and are reasonably cheap, David said, but can increase the farmer's risk for the following crop. "So if a farmer plants a cover crop and his neighbor doesn't, he may be at a disadvantage."

David believes that the system can be improved by focusing conservation efforts on the areas of the country that are contributing the most nitrate loss and establish an incentive program for farmers to utilize one or more practices known to reduce nitrate losses from tile lines.

Encouraging farmers to apply the right amount of nitrogen in the spring rather than the fall (or to sidedress), establishing a more complex cropping system which incorporates cover crops or even biofuel crops such as Miscanthus or switchgrass when there are markets, and installing end-of-pipe solutions such as controlled drainage, bioreactors, or wetlands are some of the efforts David suggests would help reduce nitrate loss.

"Until we change the payment system beyond our focus on yield alone, we're not going to make much progress in reducing nitrate losses. We also haven't developed voluntary programs that really address nitrate loss from tiles, and we need to provide more incentive and cost-share funding to producers. We may also need regulation. We could say to producers, if you buy fertilizer, you've got to do one of these five things," he said. "There's no one solution."

Dennis McKenna of the Illinois Department of Agriculture said "Dr. David's work is an important contribution in helping producers and policy makers identify the most critical areas. Hopefully this information will be used to develop a focused national and state effort to reduce nutrient losses to surface water."

Sources of Nitrate Yields in the Mississippi River Basin was published in the September-October 2010 issue of the Journal of Environmental Quality.

This research was funded by the National Science Foundation Biocomplexity in the Environment/Coupled Natural-Human Cycles Program. Authors in addition to David were Greg McIsaac from the University of Illinois and Laurie Drinkwater from Cornell University.

Debra Levey Larson | EurekAlert!
Further information:
http://www.illinois.edu

More articles from Ecology, The Environment and Conservation:

nachricht Successful calculation of human and natural influence on cloud formation
04.11.2016 | Goethe-Universität Frankfurt am Main

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>