Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists create new maps depicting potential worldwide coral bleaching by 2056

26.02.2013
New maps show how rising sea temperatures are likely to affect all coral reefs in the form of annual coral bleaching events under different emission scenarios

In a study published today in Nature Climate Change researchers used the latest emissions scenarios and climate models to show how varying levels of carbon emissions are likely to result in more frequent and severe coral bleaching events.


In a new article in Nature Climate Change scientists from NOAA's Cooperative Institute for Marine and Atmospheric Studies show maps that illustrate how rising sea temperatures are likely to affect all coral reefs, including those in Polynesia, in the form of annual coral bleaching events under various different emission scenarios. Their results emphasize that without significant reductions in emissions most coral reefs on the planet are at risk for bleaching within the next several decades.

Credit: Thomas Vignaud

Large-scale 'mass' bleaching events on coral reefs are caused by higher-than-normal sea temperatures. High temperatures make light toxic to the algae that reside within the corals. The algae, called 'zooxanthellae', provide food and give corals their bright colors. When the algae are expelled or retained but in low densities, the corals can starve and eventually die. Bleaching events caused a reported 16 percent loss of the world's coral reefs in 1998 according to the Global Coral Reef Monitoring Network.

If carbon emissions stay on the current path most of the world's coral reefs (74 percent) are projected to experience coral bleaching conditions annually by 2045, results of the study show. The study used climate model ensembles from the upcoming Fifth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC).

Around a quarter of coral reefs are likely to experience bleaching events annually five or more years earlier than the median year, and these reefs in northwestern Australia, Papau New Guinea, and some equatorial Pacific islands like Tokelau, may require urgent attention, researchers warn.

"Coral reefs in parts of the western Indian Ocean, French Polynesia and the southern Great Barrier Reef, have been identified as temporary refugia from rising sea surface temperatures," said Ruben van Hooidonk, Ph.D., from the Cooperative Institute for Marine and Atmospheric Studies (CIMAS) at the University of Miami and NOAA's Atlantic Oceanographic and Meteorological Laboratory. "These locations are not projected to experience bleaching events annually until five or more years later than the median year of 2040, with one reef location in the Austral Islands of French Polynesia protected from the onset of annual coral bleaching conditions until 2056."

The findings emphasize that without significant reductions in emissions most coral reefs are at risk, according to the study. A reduction of carbon emissions would delay annual bleaching events more than two decades in nearly a quarter (23 percent) of the world's reef areas, the research shows.

"Our projections indicate that nearly all coral reef locations would experience annual bleaching later than 2040 under scenarios with lower greenhouse gas emissions." said Jeffrey Maynard, Ph.D., from the Centre de Recherches Insulaires et Observatoire de l'Environnement (CRIOBE) in Moorea, French Polynesia. "For 394 reef locations (of 1707 used in the study) this amounts to at least two more decades in which some reefs might conceivably be able to improve their capacity to adapt to the projected changes."

"More so than any result to date, this highlights and quantifies the potential benefits for reefs of reducing emissions in terms of reduced exposure to stressful reef temperatures."

"This study represents the most up-to-date understanding of spatial variability in the effects of rising temperatures on coral reefs on a global scale," said researcher Serge Planes, Ph.D., also from the French research institute CRIOBE in French Polynesia.

The researchers involved in the study all concur that projections that combine the threats posed to reefs by increases in sea temperature and ocean acidification will further resolve where temporary refugia may exist.

The study was funded by the Pacific Islands Climate Change Cooperative based in Hawaii, the U.S. National Research Council and CNRS.

AOML, a federal research laboratory, is part of NOAA's Office of Oceanic and Atmospheric Research, located in Miami, Fla. AOML's research spans hurricanes, coastal ecosystems, oceans and human health, climate studies, global carbon systems, and ocean observations. For more information, please visit http:/www.aoml.noaa.gov

CIMAS is a research institute based at the University of Miami, within the Rosenstiel School of Marine & Atmospheric Science. It serves as a mechanism to bring together the research resources of nine major public and private research universities in Florida and the U.S. Caribbean with those of NOAA in order to develop a Center of Excellence that is relevant to understanding the Earth's oceans and atmosphere within the context of NOAA's mission. For more information, please visit http://cimas.rsmas.miami.edu/

Barbra Gonzalez | EurekAlert!
Further information:
http://www.rsmas.miami.edu

More articles from Ecology, The Environment and Conservation:

nachricht How does the loss of species alter ecosystems?
18.05.2017 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

nachricht Excess diesel emissions bring global health & environmental impacts
16.05.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

New insights into the ancestors of all complex life

29.05.2017 | Earth Sciences

New photocatalyst speeds up the conversion of carbon dioxide into chemical resources

29.05.2017 | Life Sciences

NASA's SDO sees partial eclipse in space

29.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>