Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists call for a new strategy for polar ocean observation

18.06.2010
Cost-effective approach could help predict climate change impacts for all marine ecosystems

In a report published in this week's issue of Science, a team of oceanographers, including MBL (Marine Biological Laboratory) Ecosystems Center director Hugh Ducklow, outline a polar ocean observation strategy they say will revolutionize scientists' understanding of marine ecosystem response to climate change. The approach, which calls for the use of a suite of automated technologies that complement traditional data collection, could serve as a model for marine ecosystems worldwide and help form the foundation for a comprehensive polar ocean observation system.

The complexity of marine food webs and the "chronic under-sampling" of the world's oceans present major constraints to predicting the future of and optimally managing and protecting marine resources. "We know more about Venus than we do about the Earth's oceans," says Ducklow. "We need an ocean observation system analogous to meteorological monitoring for weather forecasting, but it's harder to do in the ocean."

In polar oceans in particular, including the Western Antarctic Peninsula (WAP) where Ducklow and his colleagues conduct research as part of the NSF's Long-Term Ecological Research project at Palmer Station, high operation costs and harsh conditions restrict the coverage provided by research ships, where much of the data on this ecosystem is collected. To overcome these hurdles, oceanographers around the world have been developing technologies to complement traditional data collection by research ships. The coordinated use of these technologies will enable sustained observations throughout the year in the polar oceans and could form the foundation for a comprehensive observation strategy the team says.

In their report the scientists, led by Oscar Schofield of Rutgers University, describe a multi-platform approach to ocean observation, where data is collected by a host of automated sources including glider robots that measure ocean characteristics continuously for weeks at a time and tourist vessels, ferries, and other "ships of opportunity" outfitted with chemical and biological sensors. The authors also encourage the deployment of oceanographic instruments on animals such as elephant seals and penguins to provide information on animal behavior and oceanographic conditions. Recent tagging of Adélie penguins nesting near Palmer Station has helped scientists understand the link between nutrient upwelling and penguin foraging.

"We're looking for ways to use our existing capabilities to obtain data," says Ducklow. "Our goal is to make things cheaper and get a lot of them out there. This will help to narrow down uncertainty about the effects of warming on the polar oceans in the coming decades to century."

The team says the WAP is an ideal location for monitoring the impacts of rapid climate change on marine ecosystems and could serve as a model observation system for marine ecosystems worldwide. The rapid climate change in this region is driving large-scale changes in the food web, impacting everything from phytoplankton—the foundation of the food web—to Antarctic krill, to apex predators such as penguins, whales, and seals.

"The comprehensive deployment of these observational systems will revolutionize our understanding of how marine ecosystems are responding to climate change everywhere, not just in Antarctica," says Ducklow. "With current observation methods, the data you collect, whether it's from land or from a research vessel, is limited to access by people. Where we are only getting dozens of measurements a year from data collected by people, you could get hundreds or thousands each day with the use of automated technologies."

This paper stems from work done as part of the National Science Foundation Office of Polar Program's Long-Term Ecological Research (LTER) project at Palmer Station, Antarctica. Hugh Ducklow is the principal investigator of the Palmer LTER. Besides Ducklow and Schofield, the paper's co-authors are Douglas Martinson, Columbia University's Lamont-Doherty Earth Observatory; Michael Meredith, British Antarctic Survey; Mark Moline, California Polytechnic State University; and William Fraser, Polar Oceans Research Group, Sheridan, MT.

Reporters may contact scipak@aaas.org for full text of this paper: "How Do Polar Marine Ecosystems Respond to Rapid Climate Change?;" O. Schofield, H.W. Ducklow, D.G. Martinson, M.P. Meredith, M.A. Moline, W.R. Fraser; Science 18 June 2010 328: 1520-1523 [DOI: 10.1126/science.1185779].

The MBL is a leading international, independent, nonprofit institution dedicated to discovery and to improving the human condition through creative research and education in the biological, biomedical and environmental sciences. Founded in 1888 as the Marine Biological Laboratory, the MBL is the oldest private marine laboratory in the Americas. For more information, visit www.mbl.edu.

Gina Hebert | EurekAlert!
Further information:
http://www.mbl.edu

More articles from Ecology, The Environment and Conservation:

nachricht Safeguarding sustainability through forest certification mapping
27.06.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht Dune ecosystem modelling
26.06.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

Programming cells with computer-like logic

27.07.2017 | Life Sciences

Identified the component that allows a lethal bacteria to spread resistance to antibiotics

27.07.2017 | Life Sciences

Malaria Already Endemic in the Mediterranean by the Roman Period

27.07.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>