Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists call for a new strategy for polar ocean observation

18.06.2010
Cost-effective approach could help predict climate change impacts for all marine ecosystems

In a report published in this week's issue of Science, a team of oceanographers, including MBL (Marine Biological Laboratory) Ecosystems Center director Hugh Ducklow, outline a polar ocean observation strategy they say will revolutionize scientists' understanding of marine ecosystem response to climate change. The approach, which calls for the use of a suite of automated technologies that complement traditional data collection, could serve as a model for marine ecosystems worldwide and help form the foundation for a comprehensive polar ocean observation system.

The complexity of marine food webs and the "chronic under-sampling" of the world's oceans present major constraints to predicting the future of and optimally managing and protecting marine resources. "We know more about Venus than we do about the Earth's oceans," says Ducklow. "We need an ocean observation system analogous to meteorological monitoring for weather forecasting, but it's harder to do in the ocean."

In polar oceans in particular, including the Western Antarctic Peninsula (WAP) where Ducklow and his colleagues conduct research as part of the NSF's Long-Term Ecological Research project at Palmer Station, high operation costs and harsh conditions restrict the coverage provided by research ships, where much of the data on this ecosystem is collected. To overcome these hurdles, oceanographers around the world have been developing technologies to complement traditional data collection by research ships. The coordinated use of these technologies will enable sustained observations throughout the year in the polar oceans and could form the foundation for a comprehensive observation strategy the team says.

In their report the scientists, led by Oscar Schofield of Rutgers University, describe a multi-platform approach to ocean observation, where data is collected by a host of automated sources including glider robots that measure ocean characteristics continuously for weeks at a time and tourist vessels, ferries, and other "ships of opportunity" outfitted with chemical and biological sensors. The authors also encourage the deployment of oceanographic instruments on animals such as elephant seals and penguins to provide information on animal behavior and oceanographic conditions. Recent tagging of Adélie penguins nesting near Palmer Station has helped scientists understand the link between nutrient upwelling and penguin foraging.

"We're looking for ways to use our existing capabilities to obtain data," says Ducklow. "Our goal is to make things cheaper and get a lot of them out there. This will help to narrow down uncertainty about the effects of warming on the polar oceans in the coming decades to century."

The team says the WAP is an ideal location for monitoring the impacts of rapid climate change on marine ecosystems and could serve as a model observation system for marine ecosystems worldwide. The rapid climate change in this region is driving large-scale changes in the food web, impacting everything from phytoplankton—the foundation of the food web—to Antarctic krill, to apex predators such as penguins, whales, and seals.

"The comprehensive deployment of these observational systems will revolutionize our understanding of how marine ecosystems are responding to climate change everywhere, not just in Antarctica," says Ducklow. "With current observation methods, the data you collect, whether it's from land or from a research vessel, is limited to access by people. Where we are only getting dozens of measurements a year from data collected by people, you could get hundreds or thousands each day with the use of automated technologies."

This paper stems from work done as part of the National Science Foundation Office of Polar Program's Long-Term Ecological Research (LTER) project at Palmer Station, Antarctica. Hugh Ducklow is the principal investigator of the Palmer LTER. Besides Ducklow and Schofield, the paper's co-authors are Douglas Martinson, Columbia University's Lamont-Doherty Earth Observatory; Michael Meredith, British Antarctic Survey; Mark Moline, California Polytechnic State University; and William Fraser, Polar Oceans Research Group, Sheridan, MT.

Reporters may contact scipak@aaas.org for full text of this paper: "How Do Polar Marine Ecosystems Respond to Rapid Climate Change?;" O. Schofield, H.W. Ducklow, D.G. Martinson, M.P. Meredith, M.A. Moline, W.R. Fraser; Science 18 June 2010 328: 1520-1523 [DOI: 10.1126/science.1185779].

The MBL is a leading international, independent, nonprofit institution dedicated to discovery and to improving the human condition through creative research and education in the biological, biomedical and environmental sciences. Founded in 1888 as the Marine Biological Laboratory, the MBL is the oldest private marine laboratory in the Americas. For more information, visit www.mbl.edu.

Gina Hebert | EurekAlert!
Further information:
http://www.mbl.edu

More articles from Ecology, The Environment and Conservation:

nachricht Scientists team up on study to save endangered African penguins
16.11.2017 | Florida Atlantic University

nachricht Climate change: Urban trees are growing faster worldwide
13.11.2017 | Technische Universität München

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

UCLA engineers use deep learning to reconstruct holograms and improve optical microscopy

22.11.2017 | Medical Engineering

Watching atoms move in hybrid perovskite crystals reveals clues to improving solar cells

22.11.2017 | Materials Sciences

New study points the way to therapy for rare cancer that targets the young

22.11.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>