Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rising greenhouse gases profoundly impact microscopic marine life

21.12.2010
Study by UC Merced marine biologist shows increased acidity of ocean water -- driven by carbon dioxide emissions -- could fundamentally alter how nitrogen cycles throughout the sea

The prolonged, extensive emission of greenhouse gases over the next several decades could have significant impacts on ocean life, according to a study by UC Merced marine biologist Michael Beman.

Increases in carbon dioxide emissions — exacerbated by the burning of fossil fuels and other human activities — are making ocean water more acidic, and Beman's study shows that the increased acidity will fundamentally alter the way nitrogen cycles throughout the sea.

Because nitrogen is an important nutrient for all organisms, this could ultimately have significant impacts for all forms of marine life.

"There is growing concern about this issue because human activities are modifying ocean pH so rapidly," Beman said. "While we do not know what the full effects of changing the nitrogen cycle will be, we performed experiments all over the world and believe that these changes will be global in extent."

Beman's study — funded by the National Science Foundation and co-authored by a team of researchers from the University of Hawaii, University of Southern California and the Bermuda Institute of Ocean Sciences — will be published this week in the prestigious journal, Proceedings of the National Academy of Sciences (PNAS). Beman conducted the studies while at the University of Hawaii, before coming to UC Merced in 2009.

During the study, Beman and his coworkers decreased the pH level of ocean water — making it more acidic — in six total experiments at four different locations in the Atlantic and Pacific oceans: two near Hawaii, one off the coast of Los Angeles, one near Bermuda and two in the Sargasso Sea southeast of Bermuda.

In every instance, when the pH was decreased, the production of the oxidized forms of nitrogen used by phytoplankton and other microorganisms also decreased. That nitrogen is produced through the oxidation of ammonia in seawater by microscopic organisms.

The results showed that when the pH of the water was decreased from 8.1 to 8.0 — roughly the decrease expected over the next 20 to 30 years — ammonia oxidation rates decreased by an average of 21 percent over the six experiments, with a minimum decrease of 3 percent and a maximum of 44 percent.

Such a reduction could lead to a substantial shift in the chemical form of nitrogen supplied to phytoplankton, the single-celled aquatic "plants" that form the base of the ocean's food web. The decrease in nitrogen would likely favor smaller species of phytoplankton over larger ones, possibly creating a domino effect throughout the food web.

This is an important step in furthering science's understanding of how continued increases in greenhouse gas emissions will affect marine life on a global scale and another example of UC Merced researchers addressing society's most challenging problems.

"What makes ocean acidification such a challenging scientific and societal issue is that we're engaged in a global, unreplicated experiment — one that's difficult to study and has many unknown consequences," Beman said.

"Nevertheless, our results can be used to estimate the potential impacts of acidification on the marine nitrogen cycle and on marine life in general. These effects could be substantial and deserve additional study."

Co-authors on the PNAS paper were David A. Hutchins, Cheryl-Emiliane Chow, Andrew L. King, Yuanyuan Feng and Jed A. Fuhrman of the University of Southern California, Andreas Andersson and Nicholas R. Bates of the Bermuda Institute of Ocean Sciences, and Brian N. Popp of the University of Hawaii.

UC Merced opened Sept. 5, 2005, as the 10th campus in the University of California system and the first American research university of the 21st century. The campus significantly expands access to the UC system for students throughout the state, with a special mission to increase college-going rates among students in the San Joaquin Valley. It also serves as a major base of advanced research and as a stimulus to economic growth and diversification throughout the region. Situated near Yosemite National Park, the university is expected to grow rapidly, topping out at about 25,000 students within 30 years.

James Leonard | EurekAlert!
Further information:
http://www.ucmerced.edu

More articles from Ecology, The Environment and Conservation:

nachricht Litter is present throughout the world’s oceans: 1,220 species affected
27.03.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht International network connects experimental research in European waters
21.03.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>