Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Rising greenhouse gases profoundly impact microscopic marine life

Study by UC Merced marine biologist shows increased acidity of ocean water -- driven by carbon dioxide emissions -- could fundamentally alter how nitrogen cycles throughout the sea

The prolonged, extensive emission of greenhouse gases over the next several decades could have significant impacts on ocean life, according to a study by UC Merced marine biologist Michael Beman.

Increases in carbon dioxide emissions — exacerbated by the burning of fossil fuels and other human activities — are making ocean water more acidic, and Beman's study shows that the increased acidity will fundamentally alter the way nitrogen cycles throughout the sea.

Because nitrogen is an important nutrient for all organisms, this could ultimately have significant impacts for all forms of marine life.

"There is growing concern about this issue because human activities are modifying ocean pH so rapidly," Beman said. "While we do not know what the full effects of changing the nitrogen cycle will be, we performed experiments all over the world and believe that these changes will be global in extent."

Beman's study — funded by the National Science Foundation and co-authored by a team of researchers from the University of Hawaii, University of Southern California and the Bermuda Institute of Ocean Sciences — will be published this week in the prestigious journal, Proceedings of the National Academy of Sciences (PNAS). Beman conducted the studies while at the University of Hawaii, before coming to UC Merced in 2009.

During the study, Beman and his coworkers decreased the pH level of ocean water — making it more acidic — in six total experiments at four different locations in the Atlantic and Pacific oceans: two near Hawaii, one off the coast of Los Angeles, one near Bermuda and two in the Sargasso Sea southeast of Bermuda.

In every instance, when the pH was decreased, the production of the oxidized forms of nitrogen used by phytoplankton and other microorganisms also decreased. That nitrogen is produced through the oxidation of ammonia in seawater by microscopic organisms.

The results showed that when the pH of the water was decreased from 8.1 to 8.0 — roughly the decrease expected over the next 20 to 30 years — ammonia oxidation rates decreased by an average of 21 percent over the six experiments, with a minimum decrease of 3 percent and a maximum of 44 percent.

Such a reduction could lead to a substantial shift in the chemical form of nitrogen supplied to phytoplankton, the single-celled aquatic "plants" that form the base of the ocean's food web. The decrease in nitrogen would likely favor smaller species of phytoplankton over larger ones, possibly creating a domino effect throughout the food web.

This is an important step in furthering science's understanding of how continued increases in greenhouse gas emissions will affect marine life on a global scale and another example of UC Merced researchers addressing society's most challenging problems.

"What makes ocean acidification such a challenging scientific and societal issue is that we're engaged in a global, unreplicated experiment — one that's difficult to study and has many unknown consequences," Beman said.

"Nevertheless, our results can be used to estimate the potential impacts of acidification on the marine nitrogen cycle and on marine life in general. These effects could be substantial and deserve additional study."

Co-authors on the PNAS paper were David A. Hutchins, Cheryl-Emiliane Chow, Andrew L. King, Yuanyuan Feng and Jed A. Fuhrman of the University of Southern California, Andreas Andersson and Nicholas R. Bates of the Bermuda Institute of Ocean Sciences, and Brian N. Popp of the University of Hawaii.

UC Merced opened Sept. 5, 2005, as the 10th campus in the University of California system and the first American research university of the 21st century. The campus significantly expands access to the UC system for students throughout the state, with a special mission to increase college-going rates among students in the San Joaquin Valley. It also serves as a major base of advanced research and as a stimulus to economic growth and diversification throughout the region. Situated near Yosemite National Park, the university is expected to grow rapidly, topping out at about 25,000 students within 30 years.

James Leonard | EurekAlert!
Further information:

More articles from Ecology, The Environment and Conservation:

nachricht Dispersal of Fish Eggs by Water Birds – Just a Myth?
19.02.2018 | Universität Basel

nachricht Removing fossil fuel subsidies will not reduce CO2 emissions as much as hoped
08.02.2018 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>