Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Researchers Measure Reaction Rates of Second Key Atmospheric Component

Work on Criegee Intermediate Published in Science Magazine

Researchers at Sandia National Laboratories’ Combustion Research Facility, the University of Manchester, Bristol University, University of Southampton and Hong Kong Polytechnic have successfully measured reaction rates of a second Criegee intermediate, CH3CHOO, and proven that the reactivity of the atmospheric chemical depends strongly on which way the molecule is twisted.

The measurements will provide further insight into hydrocarbon combustion and atmospheric chemistry. A paper describing the research findings titled “Direct Measurements of Conformer-Dependent Reactivity of the Criegee Intermediate CH3CHOO” is featured in the April 12 edition of Science magazine.

Criegee intermediates — carbonyl oxides — are considered to be pivotal atmospheric reactants, but only indirect knowledge of their reaction kinetics had previously been available. Last year, Sandia and its UK-based partners reported, for the first time, direct measurements of reactions of the smallest gas-phase Criegee intermediate using photoionization mass spectrometry. That research was featured in the January 13, 2012, edition of Science. A short video featuring two Sandia researchers describing the work can be seen here.

New findings include confirmed fast reactions, first-time measurements with water

Sandia combustion chemist Craig Taatjes, the lead author on the Science papers, said there are several significant aspects about the new research findings.

In particular, the measurements show that the reaction rate depends dramatically on whether the CH3CHOO is bent, with the CH3– and –OO ends pointing toward the same side, a conformation called “syn–” or more straightened, with the CH3– and –OO ends pointing away from each other, called “anti–”.

“Observing conformer-dependent reactivity represents the first direct experimental test of theoretical predictions,” said Taatjes. “The work will be of tremendous importance in validating the theoretical methods that are needed to accurately predict the kinetics for reactions of Criegee intermediates that still cannot be measured directly.”

In fact, said Taatjes, the latest results supply one of the most critical targets for such validation. Because of the large concentration of water in Earth’s atmosphere, Criegee concentrations — and, hence, the tropospheric implications of all Criegee intermediate reactions — depend on knowing the rate constant for reaction with water.

Although the reactions for most Criegee intermediates, including the syn- conformer of CH3CHOO, with water may simply be too slow to be measured by the research team’s methods, anti-CH3CHOO has been predicted to have a vastly enhanced reactivity with water. Taatjes and his colleagues confirmed this prediction and made the first experimental determination of the reaction rate of a Criegee intermediate with water. “A Criegee intermediate’s reaction with water determines what the concentration of these intermediates in the atmosphere is going to be. This is a significant benchmark,” he said.

Taatjes said one of the questions remaining after the first direct measurement of Criegee reactions was whether the remarkably fast reaction of CH2OO with SO2 was representative of other Criegee intermediates.

“This measurement of a second intermediate — which we found to react just about as fast with sulfur dioxide as the intermediate we measured last year — supports the notion that the reactions of all Criegee intermediates with SO2 will occur easily,” said Taatjes “It also confirms that Criegee intermediate reactions are likely to make a contribution to sulfate and nitrate chemistry in the troposphere.” This increase in reactivity, he said, provides additional evidence that Criegee intermediates will play a significant role in the oxidation of sulfur dioxide in the atmosphere.

Unraveling the mysteries, complexities of Criegee intermediates

Hydrocarbons that are emitted into Earth’s troposphere, either naturally or by humans, are removed by many reactive atmospheric species. For unsaturated hydrocarbons — molecules with at least one C=C double bond — a prominent removal mechanism is reaction with ozone, called ozonolysis. It is accepted that ozonolysis produces other reactive species, including carbonyl oxides, which are known as Criegee intermediates. Rudolf Criegee, a German chemist, first proposed the mechanism of ozonolysis in the 1950s.

Because so much ozonolysis happens in the atmosphere, the reactions of Criegee intermediates are thought to be very important in a wide range of tropospheric processes like secondary organic aerosol formation and nighttime production of highly reactive OH radicals. As a result, the chemistry of these reactive Criegee intermediates has been the subject of intense investigation for decades, but without any direct measurement of their reaction rates until last year’s published work by Sandia and its collaborators.

The research was funded by the U.S. Department of Energy's Office of Science and conducted using the Advanced Light Source, a scientific user facility also supported by the DOE Office of Science.

Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin company, for the U.S. Department of Energy’s National Nuclear Security Administration. With main facilities in Albuquerque, N.M., and Livermore, Calif., Sandia has major R&D responsibilities in national security, energy and environmental technologies and economic competitiveness.

Sandia news media contact: Mike Janes,, (925) 294-2447

Mike Janes | Newswise
Further information:

More articles from Ecology, The Environment and Conservation:

nachricht Dispersal of Fish Eggs by Water Birds – Just a Myth?
19.02.2018 | Universität Basel

nachricht Removing fossil fuel subsidies will not reduce CO2 emissions as much as hoped
08.02.2018 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

TRAPPIST-1 planets provide clues to the nature of habitable worlds

21.03.2018 | Physics and Astronomy

The search for dark matter widens

21.03.2018 | Materials Sciences

Natural enemies reduce pesticide use

21.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>