Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Measure Reaction Rates of Second Key Atmospheric Component

12.04.2013
Work on Criegee Intermediate Published in Science Magazine

Researchers at Sandia National Laboratories’ Combustion Research Facility, the University of Manchester, Bristol University, University of Southampton and Hong Kong Polytechnic have successfully measured reaction rates of a second Criegee intermediate, CH3CHOO, and proven that the reactivity of the atmospheric chemical depends strongly on which way the molecule is twisted.

The measurements will provide further insight into hydrocarbon combustion and atmospheric chemistry. A paper describing the research findings titled “Direct Measurements of Conformer-Dependent Reactivity of the Criegee Intermediate CH3CHOO” is featured in the April 12 edition of Science magazine.

Criegee intermediates — carbonyl oxides — are considered to be pivotal atmospheric reactants, but only indirect knowledge of their reaction kinetics had previously been available. Last year, Sandia and its UK-based partners reported, for the first time, direct measurements of reactions of the smallest gas-phase Criegee intermediate using photoionization mass spectrometry. That research was featured in the January 13, 2012, edition of Science. A short video featuring two Sandia researchers describing the work can be seen here.

New findings include confirmed fast reactions, first-time measurements with water

Sandia combustion chemist Craig Taatjes, the lead author on the Science papers, said there are several significant aspects about the new research findings.

In particular, the measurements show that the reaction rate depends dramatically on whether the CH3CHOO is bent, with the CH3– and –OO ends pointing toward the same side, a conformation called “syn–” or more straightened, with the CH3– and –OO ends pointing away from each other, called “anti–”.

“Observing conformer-dependent reactivity represents the first direct experimental test of theoretical predictions,” said Taatjes. “The work will be of tremendous importance in validating the theoretical methods that are needed to accurately predict the kinetics for reactions of Criegee intermediates that still cannot be measured directly.”

In fact, said Taatjes, the latest results supply one of the most critical targets for such validation. Because of the large concentration of water in Earth’s atmosphere, Criegee concentrations — and, hence, the tropospheric implications of all Criegee intermediate reactions — depend on knowing the rate constant for reaction with water.

Although the reactions for most Criegee intermediates, including the syn- conformer of CH3CHOO, with water may simply be too slow to be measured by the research team’s methods, anti-CH3CHOO has been predicted to have a vastly enhanced reactivity with water. Taatjes and his colleagues confirmed this prediction and made the first experimental determination of the reaction rate of a Criegee intermediate with water. “A Criegee intermediate’s reaction with water determines what the concentration of these intermediates in the atmosphere is going to be. This is a significant benchmark,” he said.

Taatjes said one of the questions remaining after the first direct measurement of Criegee reactions was whether the remarkably fast reaction of CH2OO with SO2 was representative of other Criegee intermediates.

“This measurement of a second intermediate — which we found to react just about as fast with sulfur dioxide as the intermediate we measured last year — supports the notion that the reactions of all Criegee intermediates with SO2 will occur easily,” said Taatjes “It also confirms that Criegee intermediate reactions are likely to make a contribution to sulfate and nitrate chemistry in the troposphere.” This increase in reactivity, he said, provides additional evidence that Criegee intermediates will play a significant role in the oxidation of sulfur dioxide in the atmosphere.

Unraveling the mysteries, complexities of Criegee intermediates

Hydrocarbons that are emitted into Earth’s troposphere, either naturally or by humans, are removed by many reactive atmospheric species. For unsaturated hydrocarbons — molecules with at least one C=C double bond — a prominent removal mechanism is reaction with ozone, called ozonolysis. It is accepted that ozonolysis produces other reactive species, including carbonyl oxides, which are known as Criegee intermediates. Rudolf Criegee, a German chemist, first proposed the mechanism of ozonolysis in the 1950s.

Because so much ozonolysis happens in the atmosphere, the reactions of Criegee intermediates are thought to be very important in a wide range of tropospheric processes like secondary organic aerosol formation and nighttime production of highly reactive OH radicals. As a result, the chemistry of these reactive Criegee intermediates has been the subject of intense investigation for decades, but without any direct measurement of their reaction rates until last year’s published work by Sandia and its collaborators.

The research was funded by the U.S. Department of Energy's Office of Science and conducted using the Advanced Light Source, a scientific user facility also supported by the DOE Office of Science.

Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin company, for the U.S. Department of Energy’s National Nuclear Security Administration. With main facilities in Albuquerque, N.M., and Livermore, Calif., Sandia has major R&D responsibilities in national security, energy and environmental technologies and economic competitiveness.

Sandia news media contact: Mike Janes, mejanes@sandia.gov, (925) 294-2447

Mike Janes | Newswise
Further information:
http://www.sandia.gov

More articles from Ecology, The Environment and Conservation:

nachricht How does the loss of species alter ecosystems?
18.05.2017 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

nachricht Excess diesel emissions bring global health & environmental impacts
16.05.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

Im Focus: Hydrogen Bonds Directly Detected for the First Time

For the first time, scientists have succeeded in studying the strength of hydrogen bonds in a single molecule using an atomic force microscope. Researchers from the University of Basel’s Swiss Nanoscience Institute network have reported the results in the journal Science Advances.

Hydrogen is the most common element in the universe and is an integral part of almost all organic compounds. Molecules and sections of macromolecules are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

Media accreditation opens for historic year at European Health Forum Gastein

16.05.2017 | Event News

 
Latest News

New approach to revolutionize the production of molecular hydrogen

22.05.2017 | Materials Sciences

Scientists enlist engineered protein to battle the MERS virus

22.05.2017 | Life Sciences

Experts explain origins of topographic relief on Earth, Mars and Titan

22.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>