Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Measure Reaction Rates of Second Key Atmospheric Component

12.04.2013
Work on Criegee Intermediate Published in Science Magazine

Researchers at Sandia National Laboratories’ Combustion Research Facility, the University of Manchester, Bristol University, University of Southampton and Hong Kong Polytechnic have successfully measured reaction rates of a second Criegee intermediate, CH3CHOO, and proven that the reactivity of the atmospheric chemical depends strongly on which way the molecule is twisted.

The measurements will provide further insight into hydrocarbon combustion and atmospheric chemistry. A paper describing the research findings titled “Direct Measurements of Conformer-Dependent Reactivity of the Criegee Intermediate CH3CHOO” is featured in the April 12 edition of Science magazine.

Criegee intermediates — carbonyl oxides — are considered to be pivotal atmospheric reactants, but only indirect knowledge of their reaction kinetics had previously been available. Last year, Sandia and its UK-based partners reported, for the first time, direct measurements of reactions of the smallest gas-phase Criegee intermediate using photoionization mass spectrometry. That research was featured in the January 13, 2012, edition of Science. A short video featuring two Sandia researchers describing the work can be seen here.

New findings include confirmed fast reactions, first-time measurements with water

Sandia combustion chemist Craig Taatjes, the lead author on the Science papers, said there are several significant aspects about the new research findings.

In particular, the measurements show that the reaction rate depends dramatically on whether the CH3CHOO is bent, with the CH3– and –OO ends pointing toward the same side, a conformation called “syn–” or more straightened, with the CH3– and –OO ends pointing away from each other, called “anti–”.

“Observing conformer-dependent reactivity represents the first direct experimental test of theoretical predictions,” said Taatjes. “The work will be of tremendous importance in validating the theoretical methods that are needed to accurately predict the kinetics for reactions of Criegee intermediates that still cannot be measured directly.”

In fact, said Taatjes, the latest results supply one of the most critical targets for such validation. Because of the large concentration of water in Earth’s atmosphere, Criegee concentrations — and, hence, the tropospheric implications of all Criegee intermediate reactions — depend on knowing the rate constant for reaction with water.

Although the reactions for most Criegee intermediates, including the syn- conformer of CH3CHOO, with water may simply be too slow to be measured by the research team’s methods, anti-CH3CHOO has been predicted to have a vastly enhanced reactivity with water. Taatjes and his colleagues confirmed this prediction and made the first experimental determination of the reaction rate of a Criegee intermediate with water. “A Criegee intermediate’s reaction with water determines what the concentration of these intermediates in the atmosphere is going to be. This is a significant benchmark,” he said.

Taatjes said one of the questions remaining after the first direct measurement of Criegee reactions was whether the remarkably fast reaction of CH2OO with SO2 was representative of other Criegee intermediates.

“This measurement of a second intermediate — which we found to react just about as fast with sulfur dioxide as the intermediate we measured last year — supports the notion that the reactions of all Criegee intermediates with SO2 will occur easily,” said Taatjes “It also confirms that Criegee intermediate reactions are likely to make a contribution to sulfate and nitrate chemistry in the troposphere.” This increase in reactivity, he said, provides additional evidence that Criegee intermediates will play a significant role in the oxidation of sulfur dioxide in the atmosphere.

Unraveling the mysteries, complexities of Criegee intermediates

Hydrocarbons that are emitted into Earth’s troposphere, either naturally or by humans, are removed by many reactive atmospheric species. For unsaturated hydrocarbons — molecules with at least one C=C double bond — a prominent removal mechanism is reaction with ozone, called ozonolysis. It is accepted that ozonolysis produces other reactive species, including carbonyl oxides, which are known as Criegee intermediates. Rudolf Criegee, a German chemist, first proposed the mechanism of ozonolysis in the 1950s.

Because so much ozonolysis happens in the atmosphere, the reactions of Criegee intermediates are thought to be very important in a wide range of tropospheric processes like secondary organic aerosol formation and nighttime production of highly reactive OH radicals. As a result, the chemistry of these reactive Criegee intermediates has been the subject of intense investigation for decades, but without any direct measurement of their reaction rates until last year’s published work by Sandia and its collaborators.

The research was funded by the U.S. Department of Energy's Office of Science and conducted using the Advanced Light Source, a scientific user facility also supported by the DOE Office of Science.

Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin company, for the U.S. Department of Energy’s National Nuclear Security Administration. With main facilities in Albuquerque, N.M., and Livermore, Calif., Sandia has major R&D responsibilities in national security, energy and environmental technologies and economic competitiveness.

Sandia news media contact: Mike Janes, mejanes@sandia.gov, (925) 294-2447

Mike Janes | Newswise
Further information:
http://www.sandia.gov

More articles from Ecology, The Environment and Conservation:

nachricht Upcycling 'fast fashion' to reduce waste and pollution
03.04.2017 | American Chemical Society

nachricht Litter is present throughout the world’s oceans: 1,220 species affected
27.03.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

Researchers invent process to make sustainable rubber, plastics

25.04.2017 | Materials Sciences

Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017

25.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>