Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research Study to Shed Light on Emerging Seaborne Pathogen

22.01.2009
A new research study at the University of Delaware seeks to determine why Vibrio parahaemolyticus, a microorganism that lives in seawater and is related to the bacterium that causes cholera, is expanding its range and virulence.

Vibrio parahaemolyticus is a leading cause of seafood-borne illness worldwide, most frequently associated with the consumption of raw or undercooked seafood, particularly oysters and other mollusks, and crabs. Victims typically suffer from diarrhea, vomiting, fever and chills for a few days, although the infection can be fatal in those with weakened immune systems.

“This organism has been around for a long time,” says Michelle Parent, assistant professor of medical technology at the University of Delaware and a co-investigator on the study. “However, only recently, in the past decade, has a new, more virulent isolate become more prevalent around the globe.”

In North America, Vibrio parahaemolyticus is considered an “emerging pathogen.” An estimated 4,500 cases of infection occur each year in the United States, according to the Centers for Disease Control. However, the agency suggests the number likely is much higher because labs rarely use the medium necessary to identify the organism, and cases go unreported.

“Vibrio parahaemolyticus usually causes a gastrointestinal infection that lasts two to three days, although individuals with compromised immune systems who work around seawater and get infected from a cut or open wound can die within a day,” Parent says.

“This organism grows super-fast,” Parent explains. “It has a replication time of six to nine minutes, which is very quick compared to other microbes.”

The ultimate aim of the University of Delaware study, which is funded by a $400,000 food biosafety grant from the U.S. Department of Agriculture (USDA), is to home in on this emerging pathogen's virulence genes and determine how the organism overcomes its victim's immune system -- information that can then be used to combat, detect and prevent infection.

The aquaculture industry loses millions of dollars each year due to the contamination of oyster beds with V. parahaemolyticus during the summer months. Thus, providing oyster farmers with an agent to treat the oysters is an important overall goal and potential future direction of the research, Parent says.

Working with Parent on the project are E. Fidelma Boyd, assistant professor of biological sciences at the University of Delaware, and collaborator Gary Richards, a research microbiologist at the USDA's Agricultural Research Service in Dover, Del.

“Vibrio parahaemolyticus is most prevalent in the warmer summer months, especially in the U.S. Gulf Coast region where it occurs in high numbers,” Boyd, a native of Ireland, says.

“In the past decade, the organism's geographic distribution has been extended into more northerly climes, in particular, the Pacific Northwest, most likely due to global warming. Thus, the occurrence and prevalence of the organism is likely to continue to expand,” Boyd notes.

An oyster filters its food from the seawater in which it lives, ingesting not only tiny plankton but whatever else may be present in the water, including harmful bacteria such as V. parahaemolyticus. Thus, when a person consumes a raw oyster contaminated with the organism, they become infected. (Thoroughly cooking the seafood can prevent infection.)

The researchers want to determine what happens once V. parahaemolyticus attaches to a host's cells and begins multiplying.

Through a series of experiments using various infectious doses of the organism, the scientists will explore what happens when a cell is infected, and what immune response is required to eliminate infection.

“Something is happening to allow this organism to predominate,” Parent says. “What makes it so powerful? Does it have some advantage in the environment?”

“We want to determine if the bacterium has acquired new genes to make it more virulent, allowing it to survive better in the aquatic environment and/or in the human gut,” Boyd adds.

In a recent study published in BMC Microbiology, Boyd, Parent and their co-authors show using genomic analysis that this new highly virulent strain has acquired large pieces of DNA, which may give the bacterium a major advantage from an evolutionary point of view.

“Using molecular genetic approaches, we will delete some of these genes in the bacterium and determine how well the organism can survive and grow,” Boyd notes.

Tracey Bryant | Newswise Science News
Further information:
http://www.udel.edu

More articles from Ecology, The Environment and Conservation:

nachricht Dispersal of Fish Eggs by Water Birds – Just a Myth?
19.02.2018 | Universität Basel

nachricht Removing fossil fuel subsidies will not reduce CO2 emissions as much as hoped
08.02.2018 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>