Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New research commitment to save the Vasa

20.11.2008
How should the humidity, temperature, and light be set to preserve the royal warship Vasa for posterity? How much and how quickly are the ship's wood and preservative breaking down, and how is the ship's stability being affected by this?

Researchers are now going to study the degradation processes and test new methods for determine their speed, including the monitoring of how much oxygen is consumed. They will also trying out new methods for removing iron and neutralizing acids to stop the degradation. A major co-financed project will provide SEK 18 million.

Press release from the Swedish Research Council Formas, the Swedish Foundation for Strategic Research, the Swedish Research Council, and VINNOVA (the Swedish Governmental Agency for Innovation Systems), 2008-11-19

The royal warship Vasa is one of Sweden's best known and most frequently visited tourist attractions. The ship and the objects it carried are a source of knowledge about the living conditions, culture, and technology of the 17th century.

"It is urgent and important to contribute to research that can enable us to preserve the ship for posterity," says Rolf Annerberg, director general of the Swedish Research Council Formas, one of the financiers behind the new research project.

A total of SEK 18 million will be committed to the project. Formas will provide SEK 1.6 million, the Foundation for Strategic Research SEK 2 million, VINNOVA SEK 2 million, and the Swedish Research Council SEK 0.9 million. The bulk of the funding, SEK 11.6 million, will come from the Swedish National Maritime Museums, SMM.

The ship which weighs about 1,000 tons, contains some 2 tons of sulfur, 2 tons of iron, and 50 tons of preservative. To a depth of 5-10 millimeters the wood is depleted of cellulose, which bacteria on the bottom of the bay consumed over the 333 years the ship lay there. Sulfur compounds from the brackish water and from the sewage of the city were absorbed by the wood and now exists in various chemical forms, either free or bound to iron or to components of the wood. Iron compounds come from iron bolts that have rusted away and from cannonballs, and they are widely diffused in the wood.

The project will address the issues that remain unanswered: To what extent and how quickly are the various components of the wood and preservative breaking down. How is this degradation affected by access to atmospheric oxygen, the moisture of the wood, the presence of iron compounds and sulfur compounds, and temperature? How can these processes be stopped? How are the properties of the wood and thereby the entire ship's stability impacted by these processes? Among other things, the project will test new methods for analyzing wood, metering gas diffusion, and monitoring oxygen consumption. This is a comprehensive project, and the several thousand objects sometimes require other methods for preservation than those used for the hull.

The project will be carried out in 2009-2011 under the direction of SMM, with the participation of the Swedish University of Agricultural Sciences, STFI-Packforsk, the National Museum of Denmark, and the Royal Institute of Technology in Stockholm.

Emilie von Essen | alfa
Further information:
http://www.formas.se

More articles from Ecology, The Environment and Conservation:

nachricht Litter is present throughout the world’s oceans: 1,220 species affected
27.03.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht International network connects experimental research in European waters
21.03.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

NASA laser communications to provide Orion faster connections

30.03.2017 | Physics and Astronomy

Reusable carbon nanotubes could be the water filter of the future, says RIT study

30.03.2017 | Studies and Analyses

Unique genome architectures after fertilisation in single-cell embryos

30.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>