Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New research may lead to better climate models for global warming, El Niño

10.12.2007
One hundred fifty scientists from more than 40 universities in nine countries are starting a coordinated program aimed at gaining new insights about the Earth's climate and the complex, interconnected system involving the oceans, the atmosphere and the land.

The program will study the southeastern Pacific Ocean, the marine area off South America's west coast — a region where the interplay among low clouds, strong low-level winds, coastal ocean currents, surfacing of deep water, the Andes Mountains, aerosols and other factors shape the regional climate and affect global weather in ways that are poorly understood.

"Our research should produce a better understanding of the southeast Pacific Ocean system and improve our global computer climate models, which would lead to more confidence in climate forecasts, including predictions about global warming," said UCLA professor of atmospheric and oceanic sciences C. Roberto Mechoso, who chairs the program, known as VOCALS (VAMOS Ocean-Cloud-Atmosphere-Land Study). "Models currently used for climate change studies have systematic errors concerning the southeastern Pacific Ocean, and because the models are not accurate for such an extensive area, the El Niños they produce in the Pacific are questionable as well. We hope our research will get rid of, or at least greatly decrease, these uncertainties."

Variations in the southeast Pacific climate affect rainfall and temperature worldwide, directly or indirectly, Mechoso believes, but how the system works is not well understood and therefore cannot be modeled or predicted accurately.

"Despite its great importance to the Earth's climate system, the ocean-cloud-atmosphere-land system in the southeast Pacific has been sparsely observed," Mechoso said. "With VOCALS, that will change drastically."

Will VOCALS increase our understanding of how much global warming will occur, and over what period of time?

"Absolutely," said Mechoso, an expert on El Niño who studies the coasts of Ecuador, Peru and Chile. "We may also produce a better understanding of the dynamics of El Niño. The relation between the eastern Pacific and El Niño is strong. El Niño develops in the eastern Pacific, so when the eastern Pacific is not well represented in climate models, El Niño is not well represented in the models either."

VOCALS has a scientific modeling program, headed by Mechoso, which seeks to improve model simulations of key climate processes, and an experimental field component, headed by Robert Wood, assistant professor of atmospheric sciences at the University of Washington. This intensive experimental field program will measure — using four aircraft and two research ships containing scientific instruments — how thick and deep the clouds are, where and why they open, and a variety of other elements to answer key scientific questions related to the climate system of the southeast Pacific region. One ship is from the United States, the other is from Peru; the scientists expect another ship from either Chile or Ecuador.

"There is tremendous analysis and modeling work that will go along with the field project," Mechoso said.

VOCALS is supported primarily by federal funding from the National Science Foundation and the National Atmospheric and Oceanic Administrations. Additional support comes from the U.S. Department of Energy and the Office of Naval Research, as well as Chile, Peru and the U.K. Meteorological Office, which provided a research aircraft.

VOCALS, which has a budget of more than $16 million, will continue for three to five years, beginning in January 2008. The field program will begin in October 2008 off the coasts of Chile and Peru.

"I believe we have the right questions and the right hypotheses to guide our work," Mechoso said. "We will learn how the southeastern Pacific Ocean system works and find out ways to improve the performance of our climate models."

Mechoso's own research project within VOCALS, in collaboration with the National Center for Environmental Prediction, aims to improve the model that is used by the United States for seasonal climate prediction. The "V" in VOCALS represents an acronym: VAMOS, or Variability of the American Monsoon Systems. Mechoso was the first chair of this panel of the World Climate Research Program, which identified the eastern Pacific as an area where improvement in climate models is essential.

The scientists in VOCALS are also trying to learn more about the role of aerosol in cloud behavior and climate.

"The role of aerosol in climate is very complex and we are working very hard to capture aerosol effects in climate models," Mechoso said.

Particles in the atmosphere can directly influence radiation from the sun but can also have indirect influences on solar radiation by affecting cloud formation. The United Nations' Intergovernmental Panel on Climate Change (which shared the 2007 Nobel Peace Prize with former Vice President Al Gore) has emphasized the need to reduce the overall uncertainty in the calculation of climate-forcing by aerosol.

Stuart Wolpert | EurekAlert!
Further information:
http://www.ucla.edu

More articles from Ecology, The Environment and Conservation:

nachricht Preservation of floodplains is flood protection
27.09.2017 | Technische Universität München

nachricht Conservationists are sounding the alarm: parrots much more threatened than assumed
15.09.2017 | Justus-Liebig-Universität Gießen

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Ocean atmosphere rife with microbes

17.10.2017 | Life Sciences

Neutrons observe vitamin B6-dependent enzyme activity useful for drug development

17.10.2017 | Life Sciences

NASA finds newly formed tropical storm lan over open waters

17.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>