Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Worldwide atmospheric measurements to determine the role of atmospheric fine particles in climate change

Finnish-led international aerosol project starts extensive worldwide atmospheric measurements: will determine the role of atmospheric fine particles in climate change

The Finnish Meteorological Institute in Helsinki, Finland, will host the first annual meeting of the European Integrated Project on Aerosol Cloud Climate and Air Quality Interactions, EUCAARI, headed by Academy Professor Markku Kulmala, on 19–22 November 2007. The purpose of EUCAARI is to significantly improve current knowledge of the impact of fine particles in the atmosphere on climate and air quality.

The first year of the project was dedicated to developing state-of-the-art aerosol measuring equipment, establishing a global network of measuring stations, and planning. The measuring period, beginning next spring, will collect data on European air through both ground-based and airborne measurements simultaneously.

During the past year, this EU-wide research project has developed an extremely sensitive measuring device for aerosols, allowing for reliable measurements of particles less than 3 nanometres across. Such a development in measuring technology will play a key role when solving the physical and chemical questions of aerosol generation and formation, and has already enabled significant, recently-published new observations on the quantity of particles less than 3 nm in size.

The past few months have also seen the establishment of a global measuring station network for EUCAARI. Stations have been established in Brazil, South Africa, China, and India. They cover measurement areas that are geographically important for the monitoring of air pollution. For example, the Brazilian station is located in the rainforest region, and the South African station in the savannah area. The stations will start operating from the beginning of 2008. In addition to the University of Helsinki, the Finnish Meteorological Institute plays a key role in running the observation stations and planning the infrastructure.

Next May, a new, month-long measuring period will begin. During that time, the atmosphere above Europe will be observed simultaneously from both ground-based and aircraft-borne equipment. The data-gathering flights will move across Europe in various directions. This will provide measuring data on, for example, the development of aerosol quantities at various altitudes in the atmosphere, and trace the long-range migration of air masses and various kinds of pollution. The month-long measurement period is part of a wider 15-month (1 March 2008–31 May 2009) intensive EUCAARI ground-based measurement campaign involving measuring stations in and outside Europe. The University of Helsinki’s Hyytiälä Forestry Field Station will contribute to this intensive period by providing ground-based measurements.

The four-year long EUCAARI was launched in January 2007, and will end in December 2010. The total budget of EUCAARI, currently the largest aerosol project in Europe, is €15 million, 10 million of which is covered by the European Union. The project employs researchers from 25 different countries.

Minna Meriläinen | alfa
Further information:

More articles from Ecology, The Environment and Conservation:

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

nachricht Malaysia's unique freshwater mussels in danger
27.09.2016 | The University of Nottingham Malaysia Campus

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>