Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Agricultural soil erosion not contributing to global warming

26.10.2007
Agricultural soil erosion is not a source of carbon dioxide to the atmosphere, according to research published online today (25 October) in Science. The study was carried out by an international team led by researchers at the Katholieke Universiteit Leuven, Belgium, the University of Exeter, UK, and the University of California, Davis.

The researchers developed a new method to establish the net effect of erosion on exchanges of carbon between the soil and the atmosphere. They found that in landscapes subject to soil erosion, erosion acts like a conveyor belt, excavating subsoil, passing it through surface soils and burying it in hill-slope hollows.

During its journey, the soil absorbs carbon from plant material and this becomes buried within the soil in depositional areas. Erosion, therefore, leads to more carbon being removed from the atmosphere than is emitted, creating what can be described as a ‘sink’ of atmospheric carbon.

The team found that these sinks of CO2 represent the equivalent of around 1.5% of annual fossil fuel emissions. This finding challenges previous assessments that erosion represents an additional source of carbon to the atmosphere equivalent to adding 13% to annual fossil fuel emissions. The finding also challenges the opposite notion that erosion is currently offsetting fossil fuel emissions by more than 10%.

Dr Kristof Van Oost of the Katholieke Universiteit Leuven said: “There is an on-going debate on the link between agricultural soil erosion and the carbon cycle. Academics on one side have argued that soil erosion causes considerable levels of carbon emissions and on the other that erosion is actually offsetting fossil fuel emissions. Our research clearly shows that neither of these is the case.”

This new insight into the effect of erosion on the carbon cycle is essential for sound management of agricultural soils. If previous assessments that erosion causes a high level of carbon emissions to the atmosphere had been correct, then erosion control could have been used to offset fossil fuel emissions. If the assessment that erosion created a very large sink of atmospheric carbon had been correct then the environmental benefits of erosion control would have had to be set against the loss of the sink.

“Our results show that erosion control should be pursued for its environmental and agronomic benefits but should not be used to offset fossil fuel emissions,” said Professor Tim Quine of the University of Exeter. “Soil erosion is not the silver bullet for offsetting the ever-increasing emission of CO2 to the atmosphere.”

The researchers used a by-product of nuclear weapons testing (caesium-137) that is present throughout the world to track the movement of soil around the agricultural landscape. This allowed them to predict how much carbon would be expected to be found in areas of soil erosion and deposition. By comparing these predictions with measured amounts of carbon in 1400 soil profiles they could identify which soils had acted as sinks of carbon and which had acted as sources. They were also able to establish the fraction of carbon that was replaced at sites of erosion, which enabled them to calculate the effect of erosion on the global carbon cycle.

Sarah Hoyle | EurekAlert!
Further information:
http://www.exeter.ac.uk

More articles from Ecology, The Environment and Conservation:

nachricht Dispersal of Fish Eggs by Water Birds – Just a Myth?
19.02.2018 | Universität Basel

nachricht Removing fossil fuel subsidies will not reduce CO2 emissions as much as hoped
08.02.2018 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>