Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

International team shows mercury concentrations in fish respond quickly to increased deposition

19.09.2007
A joint Canadian-American research team have, for the first time, demonstrated that mercury concentrations in fish respond directly to changes in atmospheric deposition of the chemical. The international team’s research began in 2001 at the Experimental Lakes in Northern Ontario and is featured in this week’s Proceedings of the National Academy of Sciences.

“Up to now a direct link has been difficult to establish because of all the other factors that affect mercury levels in fish and large pools of mercury already in the environment,” said lead author Reed Harris of Tetra Tech. “By adding stable mercury isotopes to an entire ecosystem for several years, our team was able to zero in on the effects of changing atmospheric mercury deposition.”

“The results were very dramatic,” said co-author Dr. Andrew Heyes of the University of Maryland Center for Environmental Science Chesapeake Biological Laboratory. “Using the stable isotope approach has revealed a great deal about the cycling of mercury in watersheds. We look forward to continuing our study to provide guidance in mitigating the legacy left by the years of high mercury deposition.”

To directly test the response of fish contamination to changing mercury deposition, researchers conducted a whole-ecosystem experiment, increasing the mercury load to a lake and its watershed by the addition of enriched stable mercury isotopes. The isotopes allowed the team to distinguish between experimentally applied mercury and mercury already present in the ecosystem and to examine bioaccumulation of mercury deposited to different parts of the watershed. Fish methylmercury concentrations responded rapidly to changes in mercury deposition over the first three years of study.

“This is good news. It means that a reduction in new mercury loads to many lakes should result in lower mercury in fish within a few years,” added Cynthia Gilmour of the Smithsonian Environmental Research Center and University of Maryland MEES participating faculty. Harris went on to say “The study shows the clear benefits of regulating mercury emissions, and the near-term effectiveness of emission reductions.”

Mercury levels in the environment have increased several-fold on a global scale since pre-industrial times due to emissions from coal-fired power plants, metal smelting, and other sources. Mercury is persistent in the environment, and toxic to humans and wildlife. There are currently thousands of advisories against eating fish from lakes in both Canada and the United States.

Christopher Conner | EurekAlert!
Further information:
http://www.umces.edu

More articles from Ecology, The Environment and Conservation:

nachricht Upcycling 'fast fashion' to reduce waste and pollution
03.04.2017 | American Chemical Society

nachricht Litter is present throughout the world’s oceans: 1,220 species affected
27.03.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>