Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Which came first, the moth or the cactus?

15.08.2007
Studies of desert duo show there's more to life than predator eats prey

It's not a good idea to put all your eggs in one basket… unless you're a senita moth.

Found in the parched Sonoran desert of southern Arizona and northern Mexico, the senita moth depends on a single plant species -- the senita cactus -- both for its food and for a place to lay eggs. The senita cactus is equally dependent upon the moth, the only species that pollinates its flowers. Senita cacti and senita moths have a rare, mutually dependent relationship, one of only three known dependencies in which an insect actively pollinates flowers for the purpose of assuring a food resource for its offspring.

"Mutualistic relationships like this present a problem for ecological theory," said Rice University ecologist Nat Holland, who co-discovered the senita moth-senita cactus mutualism in 1995 and has studied it ever since.

The problem is that the moths lay their eggs inside the cacti's flowers immediately after pollination, and when the eggs hatch the moth larvae eat the fruit, destroying the flowers' chances to produce seeds. Historic theory predicts extreme ecological instability for this relationship; as moth populations increase, more flowers are destroyed, fewer new cacti appear, and the spiral continues until both species disappear.

Yet that hasn't happened, and Holland, assistant professor of ecology and evolutionary biology, spends several months each year observing moths and cacti in the Mexican desert to document why.

Holland, whose lab is just a few steps down the hall from his Houston office, jokes that his "real" lab is 1,500 miles away. He's studied senita at several locations in the Sonoran Desert, including the Organ Pipe Cactus National Monument in southern Arizona. But his primary site for more than a decade is a desolate, 30-acre patch of desert straddling three ranches near Bahia de Kino on the Gulf of California. Holland said he and his students sometimes go weeks without seeing other people at the sites, with the exception of a cowboy on horseback here and there.

There isn't much to see on the long drives to and from Houston either, but Holland said hours of solitude provide a valuable time for thinking and synthesizing what he's learned in the desert. That's important because his ultimate goal reaches far beyond the Sonoran Desert to a fundamental rethinking of ecological theory for such mutualistic interactions.

"I develop theoretical models, equations that attempt to explain mutualistic relationships like the one between the moth and the cactus, and I take those models into the field and examine them empirically to find out how well they predict what really happens," Holland said.

Traditional theory of such mutualistic interactions leads to predictions of unbounded population growth or instability and eventual doom due to one species overexploiting another. These predictions clearly don't square with what Holland and his students see happening in the Sonoran Desert, where both species thrive. Holland's models differ from traditional theory, suggesting that one mutualist may exert some control over the other's population increases, such that neither unbounded growth nor overexploitation ensue.

"I have always been interested in the community ecology of mutualism -- the larger puzzle -- and this moth-cactus relationship is just one piece of that," Holland said. "When we discovered the relationship in 1995, I immediately thought of using it to look at the bigger picture. But in aiming to do that, I wound up spending a decade working on the population ecology of mutualisms, a prerequisite for then understanding this larger puzzle."

Having made some progress on the population ecology of mutualism, some of Holland's current work, which is slated for publication later this year, returns to his earlier interests in community ecology. "We want to understand how the structure of mutualistic communities influences their stability and dynamics, both of individual species and of whole networks of species." The results suggest that the structures of mutualistic communities compliment those of predator-prey food webs, a finding that presents the tantalizing possibility of developing an overarching scheme that incorporates elements of both.

Jade Boyd | EurekAlert!
Further information:
http://www.rice.edu

More articles from Ecology, The Environment and Conservation:

nachricht Minimized water consumption in CSP plants - EU project MinWaterCSP is making good progress
05.12.2017 | Steinbeis-Europa-Zentrum

nachricht Jena Experiment: Loss of species destroys ecosystems
28.11.2017 | Technische Universität München

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Midwife and signpost for photons

11.12.2017 | Physics and Astronomy

How do megacities impact coastal seas? Searching for evidence in Chinese marginal seas

11.12.2017 | Earth Sciences

PhoxTroT: Optical Interconnect Technologies Revolutionized Data Centers and HPC Systems

11.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>