Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Aphids make ‘chemical weapons’ to fight off killer ladybirds

11.07.2007
Cabbage aphids have developed an internal chemical defence system which enables them to disable attacking predators by setting off a mustard oil ‘bomb’, says new research published today.

The study shows for the first time how aphids use a chemical found in the plants they eat to emit a deadly burst of mustard oil when they’re attacked by a predator, for example a ladybird. This mustard oil kills, injures or repels the ladybird, which then saves the colony of aphids from attack, although the individual aphid involved usually dies in the process.

When the aphids feed on cabbages, they consume chemicals called glucosinolates which are found in the nutrient transport vessels of the plant. Once eaten, these chemicals are then stored in the aphids’ blood. Mimicking the plants themselves, the aphids also produce an enzyme called myrosinase, which is stored in the muscles of their head and thorax. In the event of a predator attack this enzyme in the muscles comes into contact with the glucosinolates in the blood, catalysing a violent chemical reaction which releases mustard oil.

The research team from the UK and Norway confirmed their findings by controlling the diet of different groups of aphids. They found that those insects eating a diet rich in glucosinolates had a high success rate in fending off predators, whereas those without glucosinolates in their diet did not. Scientists already knew that aphids absorbed these chemicals from their food, but this study published Proceedings of the Royal Society B is the first of its kind to prove that they form the basis of a chemical defence system.

The scientists also found that the extent to which glucosinolates are stored up by the aphids from birth into adulthood depends on whether or not they develop wings. Those aphids that grow wings see a rapid decline in the amount of glucosinolates they store from the time wing buds start to develop.

Dr Glen Powell from Imperial College London’s Division of Biology, one of the paper’s authors, explains: “Our study seems to show that aphids that develop wings cease to store this chemical in their blood as they mature, as they don’t need the ‘mustard oil bomb’ to defend themselves from predators when they can just fly away. This is a great example of the way in which a species provides an ingenious method of protecting itself, whatever the circumstances.”

Dr Powell adds: “In the wild, aphids live in clonal colonies, with often many hundreds of individuals crowded together on a plant, and using this poisonous mustard oil defence provides wingless individuals with a powerful means of dispelling a predator which poses a risk to the entire colony. Unfortunately the nature of the mechanism – with the chemical stored in the insect’s blood and the catalyst stored in its muscles – means that in most cases the individual aphid responsible for seeing-off the ladybird predator dies in the process of protecting the colony.”

Danielle Reeves | alfa
Further information:
http://www.imperial.ac.uk

More articles from Ecology, The Environment and Conservation:

nachricht Upcycling 'fast fashion' to reduce waste and pollution
03.04.2017 | American Chemical Society

nachricht Litter is present throughout the world’s oceans: 1,220 species affected
27.03.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>