Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Invasive Grass May Impede Forest Regeneration

The nonnative invasive grass Microstegium vimineum may hinder the regeneration of woody species in southern forests. Chris and Sonja Oswalt (Forest Service Southern Research Station) and Wayne Clatterbuck (University of Tennessee) set up experiments on a mixed-hardwood forest in southwest Tennessee to study the growth of the invasive grass under different levels of forest disturbance. Study results were published online in the journal Forest Ecology and Management on March 27, 2007.

M. vimineum, commonly called Nepalese browntop or Japangrass, was first identified in 1919 near Knoxville, Tennessee, where it was inadvertently introduced in packing material for porcelain china. Since then, the grass has spread across the southern States, flourishing on floodplains and streamsides and displacing native vegetation.

"Microstegium can invade and persist in the low-light conditions of interior forests, making excellent use of short bursts of sunlight," says Chris Oswalt. "It can also flourish in the full light conditions that follow many canopy disturbances."

While working on a larger oak regeneration study at The Ames Plantation in southwest Tennessee, the researchers noticed a dramatic increase in Microstegium after silviculture treatments that opened the forest canopy. To test whether the grass would negatively impact the regeneration of native woody species, they conducted a separate set of studies nested within the silvicultural study with treatments that ranged from no disturbance to complete canopy removal.

After a season of monthly vegetation measures on a total of 720 plots, the researchers found that although Microstegium biomass did not differ significantly among silviculture treatments, there was a significant difference between treated and undisturbed plots, with Microstegium biomass 2 to 10 times greater in disturbed plots. They also found that the species richness of native woody species on the disturbed plots declined as the percent of Microstegium cover increased.

"We found that when exposed to sunlight, Microstegium can grow rapidly, often forming thick organic mats on the forest floor that directly impede the regeneration of native woody species by blocking sunlight, and indirectly by blocking seeds from reaching the soil in order to germinate," says Chris Oswalt. "This grass, which can be easily overlooked in the understory, should be given more attention by both researchers and land managers."

Funding and support for the study was provided by the University of Tennessee Department of Forestry, Wildlife and Fisheries, where Chris Oswalt is a Ph.D. candidate, the Southern Research Station and The Hobart Ames Foundation.

The full text of the article is available at:

Chris Oswalt | EurekAlert!
Further information:

More articles from Ecology, The Environment and Conservation:

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

nachricht Malaysia's unique freshwater mussels in danger
27.09.2016 | The University of Nottingham Malaysia Campus

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Oasis of life in the ice-covered central Arctic

24.10.2016 | Earth Sciences

‘Farming’ bacteria to boost growth in the oceans

24.10.2016 | Life Sciences

Light-driven atomic rotations excite magnetic waves

24.10.2016 | Physics and Astronomy

More VideoLinks >>>