Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The global carbon budget -- proper accounting means paying attention to inland waters

05.04.2007
Life as we know it, from the most basic microbes to our human neighbors, is carbon based. By investigating how carbon cycles through ecosystems, scientists can learn valuable information about food chains, nutrient cycling, and productivity. Because carbon dioxide is a greenhouse gas, with the ability to influence temperature, an accurate global carbon budget is needed to address climate change.

On Earth, carbon is continually cycling through terrestrial systems, inland waters, the ocean, and the atmosphere. Until little over a decade ago, when calculating the terrestrial component of the global carbon budget, inputs were limited to the ocean and the land. Because inland water bodies cover less than 1% of the Earth’s surface, it was assumed that their contribution was inconsequential.

This view was recently challenged in an Ecosystems paper highlighting the findings of a National Center for Ecological Assessment and Synthesis analysis. Carried out by a team of international scientists, including Institute of Ecosystem Studies Biogeochemist Dr. Jonathan J. Cole, the paper’s senior author, the group reveals that inland water bodies are important areas of terrestrial carbon transformation that deserve inclusion in global carbon cycle assessments.

While rivers were introduced into global carbon budget assessments in the late 90s, Cole and colleagues argue that current models are limited by a narrow definition of how rivers transport carbon. By depicting rivers as "pipes" that passively deliver terrestrial carbon to the sea, models fail to capture the complex transformations that occur on the journey toward the ocean. The fact is, according to the authors, that half of the terrestrial carbon entering inland waters is destined for a fate outside of the ocean’s salty shores.

Where does the remaining terrestrial carbon go? Approximately 40% is returned to the atmosphere as CO2 and 12% is stored in sediments. This holds true across a range of inland systems, from lakes and rivers to reservoirs and wetlands. Carbon budgets that are based on the passive pipe view are flawed because in-system transformations fall off the balance sheets. Even if models were adjusted to embrace a more dynamic view of river inputs, they would need further amending to include the true range of inland waters.

Take, for instance, the role played by lakes and reservoirs. By burying carbon in their sediments, lakes serve as important regional carbon stores. In aggregate, lakes play a significant role in the global carbon budget. On an annual basis, they bury 40% as much carbon as the ocean. Reservoirs, which are steadily increasing in number, bury more organic carbon than all natural lake basins combined and exceed oceanic organic carbon burial by more than 1.5-fold.

These findings debunk the concept that inland waters are inconsequential when accounting for the global carbon budget; instead they are places of complex and active carbon transformation. The take home message from the authors: "Continental hydrologic networks, from river mouths to the smallest upstream tributaries, do not act as neutral pipes— they are active players in the carbon cycle despite their modest size."

As global carbon budget models move from static boxes to dynamic flows, future models should take into account the myriad of ways that inland waters contribute to the carbon cycle. In many cases, these aquatic systems are biogeochemical "hot spots" within the terrestrial landscape with contributions that are significant at regional to global scales.

Lori Quillen | EurekAlert!
Further information:
http://www.ecostudies.org

More articles from Ecology, The Environment and Conservation:

nachricht Dune ecosystem modelling
23.06.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Understanding animal social networks can aid wildlife conservation
23.06.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>