Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Crops feel the heat as the world warms

19.03.2007
Over a span of two decades, warming temperatures have caused annual losses of roughly $5 billion for major food crops, according to a new study by researchers at the Carnegie Institution and Lawrence Livermore National Laboratory.

From 1981-2002, warming reduced the combined production of wheat, corn, and barley—cereal grains that form the foundation of much of the world’s diet—by 40 million metric tons per year. The study, which will be published March 16 in the online journal Environmental Research Letters, demonstrates that this decline is due to human-caused increases in global temperatures.

"Most people tend to think of climate change as something that will impact the future," said Christopher Field, co-author on the study and director of Carnegie’s Department of Global Ecology in Stanford, Calif. "But this study shows that warming over the past two decades has already had real effects on global food supply."

The study is the first to estimate how much global food production has already been affected by climate change. Field and David Lobell, lead author of the study and a researcher at Lawrence Livermore National Laboratory, compared yield figures from the Food and Agriculture Organization with average temperatures and precipitation in the major growing regions.

They found that, on average, global yields for several of the crops responded negatively to warmer temperatures, with yields dropping by about 3-5 percent for every 1 degree F increase. Average global temperatures increased by about 0.7 degrees F during the study period, with even larger changes in several regions.

"Though the impacts are relatively small compared to the technological yield gains over the same period, the results demonstrate that negative impacts are already occurring," said Lobell.

The researchers focused on the six most widely grown crops in the world: wheat, rice, maize (corn), soybeans, barley and sorghum—a genus of about 30 species of grass raised for grain. These crops occupy more than 40 percent of the world’s cropland, and account for at least 55 percent of non-meat calories consumed by humans. They also contribute more than 70 percent of the world’s animal feed.

The main value of this study, the authors said, was that it demonstrates a clear and simple correlation between temperature increases and crop yields at the global scale. However, Field and Lobell also used this information to further investigate the relationship between observed warming trends and agriculture.

"We assumed that farmers have not yet adapted to climate change—for example, by selecting new crop varieties to deal with climate change. If they have been adapting—something that is very difficult to measure—then the effects of warming may have been lower," explained Lobell.

Most experts believe that adaptation would lag several years behind climate trends, because it can be difficult to distinguish climate trends from natural variability. "A key moving forward is how well cropping systems can adapt to a warmer world. Investments in this area could potentially save billions of dollars and millions of lives," Lobell added.

Christopher Field | EurekAlert!
Further information:
http://www.carnegieinstitution.org

More articles from Ecology, The Environment and Conservation:

nachricht Making Oceans Plastic Free - Project tackles the problem of plastic pollution in the oceans
31.05.2017 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

nachricht Nitrogen Oxides Emissions: Traffic Dramatically Underestimated as Major Polluter
31.05.2017 | Universität Innsbruck

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>