Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Crops feel the heat as the world warms

19.03.2007
Over a span of two decades, warming temperatures have caused annual losses of roughly $5 billion for major food crops, according to a new study by researchers at the Carnegie Institution and Lawrence Livermore National Laboratory.

From 1981-2002, warming reduced the combined production of wheat, corn, and barley—cereal grains that form the foundation of much of the world’s diet—by 40 million metric tons per year. The study, which will be published March 16 in the online journal Environmental Research Letters, demonstrates that this decline is due to human-caused increases in global temperatures.

"Most people tend to think of climate change as something that will impact the future," said Christopher Field, co-author on the study and director of Carnegie’s Department of Global Ecology in Stanford, Calif. "But this study shows that warming over the past two decades has already had real effects on global food supply."

The study is the first to estimate how much global food production has already been affected by climate change. Field and David Lobell, lead author of the study and a researcher at Lawrence Livermore National Laboratory, compared yield figures from the Food and Agriculture Organization with average temperatures and precipitation in the major growing regions.

They found that, on average, global yields for several of the crops responded negatively to warmer temperatures, with yields dropping by about 3-5 percent for every 1 degree F increase. Average global temperatures increased by about 0.7 degrees F during the study period, with even larger changes in several regions.

"Though the impacts are relatively small compared to the technological yield gains over the same period, the results demonstrate that negative impacts are already occurring," said Lobell.

The researchers focused on the six most widely grown crops in the world: wheat, rice, maize (corn), soybeans, barley and sorghum—a genus of about 30 species of grass raised for grain. These crops occupy more than 40 percent of the world’s cropland, and account for at least 55 percent of non-meat calories consumed by humans. They also contribute more than 70 percent of the world’s animal feed.

The main value of this study, the authors said, was that it demonstrates a clear and simple correlation between temperature increases and crop yields at the global scale. However, Field and Lobell also used this information to further investigate the relationship between observed warming trends and agriculture.

"We assumed that farmers have not yet adapted to climate change—for example, by selecting new crop varieties to deal with climate change. If they have been adapting—something that is very difficult to measure—then the effects of warming may have been lower," explained Lobell.

Most experts believe that adaptation would lag several years behind climate trends, because it can be difficult to distinguish climate trends from natural variability. "A key moving forward is how well cropping systems can adapt to a warmer world. Investments in this area could potentially save billions of dollars and millions of lives," Lobell added.

Christopher Field | EurekAlert!
Further information:
http://www.carnegieinstitution.org

More articles from Ecology, The Environment and Conservation:

nachricht Bioinvasion on the rise
15.02.2017 | Universität Konstanz

nachricht Litter Levels in the Depths of the Arctic are On the Rise
10.02.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>