Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Regardless of global warming, rising CO2 levels threaten marine life

Like a piece of chalk dissolving in vinegar, marine life with hard shells is in danger of being dissolved by increasing acidity in the oceans.

Ocean acidity is rising as sea water absorbs more carbon dioxide released into the atmosphere from power plants and automobiles. The higher acidity threatens marine life, including corals and shellfish, which may become extinct later this century from the chemical effects of carbon dioxide, even if the planet warms less than expected.

A new study by University of Illinois atmospheric scientist Atul Jain, graduate student Long Cao and Carnegie Institution scientist Ken Caldeira suggests that future changes in ocean acidification are largely independent of climate change. The researchers report their findings in a paper accepted for publication in the journal Geophysical Research Letters, and posted on its Web site.

"Before our study, there was speculation in the academic community that climate change would have a big impact on ocean acidity," Jain said. "We found no such impact."

In previous studies, increasing levels of carbon dioxide in the atmosphere led to a reduction in ocean pH and carbonate ions, both of which damage marine ecosystems. What had not been studied before was how climate change, in concert with higher concentrations of carbon dioxide, would affect ocean chemistry and biology.

To investigate changes in ocean chemistry that could result from higher temperatures and carbon-dioxide concentrations, the researchers used an Earth-system model called the Integrated Science Assessment Model. Developed by Jain and his graduate students, the model includes complex physical and chemical interactions among carbon-dioxide emissions, climate change, and carbon-dioxide uptake by oceans and terrestrial ecosystems.

The ocean-surface pH has been reduced by about 0.1 during the past two centuries. Using ISAM, the researchers found ocean pH would decline a total of 0.31 by the end of this century, if carbon-dioxide emissions continue on a trajectory to ultimately stabilize at 1,000 parts per million.

During the last 200 years, the concentration of atmospheric carbon dioxide increased from about 275 parts per million to about 380 parts per million. Unchecked, it could surpass 550 parts per million by mid-century.

"As the concentration of carbon dioxide increases, ocean water will become more acidic; which is bad news for marine life," Cao said. "Fortunately, the effects of climate change will not further increase this acidity."

There are a number of effects and feedback mechanisms built into the ocean-climate system, Jain said. "Warmer water, for example, directly reduces the ocean pH due to temperature effect on the reaction rate in the carbonate system. At the same time, warmer water also absorbs less carbon dioxide, which makes the ocean less acidic. These two climate effects balance each other, which results in negligible net climate effect on ocean pH."

The addition of carbon dioxide into the oceans also affects the carbonate mineral system by decreasing the availability of carbonate ions. Calcium carbonate is used in forming shells. With less carbonate ions available, the growth of corals and shellfish could be significantly reduced.

"In our study, the increase in ocean acidity and decrease in carbonate ions occurred regardless of the degree of temperature change associated with global warming," Jain said. "This indicates that future changes in ocean acidity caused by atmospheric carbon-dioxide concentrations are largely independent of climate change."

That’s good news. The researchers’ findings, however, call into question a number of engineering schemes proposed as mitigation strategies for global warming, such as lofting reflective balloons into the stratosphere or erecting huge parasols in orbit. By blocking some of the sunlight, these devices would create a cooling effect to offset the warming caused by increasing levels of greenhouse gases.

"Even if we could engineer our way out of the climate problem, we will be stuck with the ocean acidification problem," Caldeira said. "Coral reefs will go the way of the dodo unless we quickly cut carbon-dioxide emissions."

Over the next few decades, we may make the oceans more acidic than they have been for tens of millions of years, Caldeira said. And that’s bad news.

James E. Kloeppel | EurekAlert!
Further information:

More articles from Ecology, The Environment and Conservation:

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

nachricht Malaysia's unique freshwater mussels in danger
27.09.2016 | The University of Nottingham Malaysia Campus

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

The gene of autumn colours

27.10.2016 | Life Sciences

Polymer scaffolds build a better pill to swallow

27.10.2016 | Life Sciences

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>