Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Biologically inspired sensors can augment sonar, vision system in submarines

22.02.2007
To find prey and avoid being preyed upon, fish rely on a row of specialized sensory organs along the sides of their bodies, called the lateral line. Now, a research team led by Chang Liu at the University of Illinois at Urbana-Champaign has built an artificial lateral line that can provide the same functions in underwater vehicles.

"Our development of an artificial lateral line is aimed at enhancing human ability to detect, navigate and survive in the underwater environment," said Liu, a Willett Scholar and a professor of electrical and computer engineering at Illinois. "Our goal is to develop an artificial device that mimics the functions and capabilities of the biological system."

In fish, the lateral line provides guidance for synchronized swimming, predator and obstacle avoidance, and prey detection and tracking. Equipped with an artificial lateral line, a submarine or underwater robot could similarly detect and track moving underwater targets, and avoid collisions with moving or stationary objects.

The artificial lateral line consists of an integrated linear array of micro fabricated flow sensors, with the sizes of individual sensors and spacings between them matching those of their biological counterpart.

"By detecting changes in water pressure and movement, the device can supplement sonar and vision systems in submarines and underwater robots," said Liu, who also is affiliated with the university's Beckman Institute for Advanced Science and Technology, the Institute for Genomic Biology, and the Micro and Nanotechnology Laboratory.

Liu and colleagues at Illinois and at Bowling Green State University described their work in the Dec. 12, 2006, issue of the Proceedings of the National Academy of Sciences.

To fabricate the tiny, three-dimensional structures, individual components are first cast in place on sacrificial layers using photolithography and planar deposition. A small amount of magnetic material is electroplated onto each of the parts, which are then freed from the substrate by an etchant. When a magnetic field is applied, the induced torque causes the pieces to rotate out of the plane on tiny hinges and lock into place.

Each sensor is integrated with metal-oxide-superconductor circuitry for on-chip signal processing, noise reduction and data acquisition. The largest array the researchers have built consists of 16 flow sensors with 1 millimeter spacing. Each sensor is 400 microns wide and 600 microns tall.

In tests, the researchers' artificial lateral line was able to localize a nearby underwater vibrating source, and could detect the hydrodynamic wake (such as the wake formed behind a propeller-driven submarine) for long-distance tracking. With further advances in engineering, man-made underwater vehicles should be able to autonomously image hydrodynamic events from their surroundings, Liu said.

"Although biology remains far superior to human engineering, having a man-made parallel of the biological system allows us to learn much about both basic science and engineering," Liu said. "To actively learn from biology at the molecular, cellular, tissue and organism level is still the bigger picture."

The work was funded by the U.S. Air Force Office of Scientific Research and by the Defense Advanced Research Projects Agency.

James E. Kloeppel | University of Illinois
Further information:
http://www.uiuc.edu
http://www.news.uiuc.edu/news/07/0221fish.html

More articles from Ecology, The Environment and Conservation:

nachricht Dispersal of Fish Eggs by Water Birds – Just a Myth?
19.02.2018 | Universität Basel

nachricht Removing fossil fuel subsidies will not reduce CO2 emissions as much as hoped
08.02.2018 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

'Lipid asymmetry' plays key role in activating immune cells

20.02.2018 | Life Sciences

MRI technique differentiates benign breast lesions from malignancies

20.02.2018 | Medical Engineering

Major discovery in controlling quantum states of single atoms

20.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>