Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

£2.5million in EPSRC grants enables Queen’s University Belfast to help reduce plastics waste problem

15.02.2007
Helping solve the ongoing environmental problem of plastics waste by reducing raw material usage and improving polymer performance will be one of the major benefits of two new research investigations being carried out on polymer nanocomposites at Queen’s University Belfast following the awarding of two grants totalling £2.5million from the Engineering and Physical Sciences Research Council.

Tiny molecules strung in long repeating chains, polymers in the natural world have been around since the beginning of time and today industrial polymers have a range of applications that far exceed that of any other class of material available including use as packaging materials, adhesives, coatings and electronic, biomedical and optical devices.

The new grants will enable the Polymer Cluster in The School of Mechanical and Aerospace Engineering at Queen’s and their partners, (The University of Oxford, The University of Bradford, Danone, Smith and Nephew, Innovia Films, JGP Perrite and Boran-Mopack), to further their work on an exciting new family of materials entitled nanocomposites, in which particles with nanoscale dimensions (a nanometer = 1 millionth of a millimetre), are dispersed in the polymer. Offering a dramatic improvement in material performance, with significant increases in mechanical and gas barrier properties, the use of nanocomposites can result in the client getting a more effective product. Improved performance also allows products to be manufactured with less material leading to reductions in raw material, processing energy and product transportation costs.

In addition to focussing on the processing route by which the nanoparticle-polymer mixture is formed into a final product and applying this knowledge to the development of proof of concept applications for industry and academia alike, Professor Eileen Harkin-Jones and her colleagues will also be using complex computer aided numerical modelling to predict the behaviour of materials under conditions that might otherwise be to difficult or costly to replicate, enabling manufacturers to exploit such materials to the full.

Explaining further about the eventual industrial applications for the outcomes of the research, Professor Eileen Harkin-Jones said: “Due to their properties and ease of processing into complex shapes, polymers are amongst the most important materials available to us today. The Polmers Industry currently contributes over £18 billion per annum to the UK economy and the arrival of nanocomposites in recent years has opened up a whole new window for product development.

“These substantial grants from the EPSRC will enable us to achieve a fundamental understanding of the influence of processing on the properties of the final product, and thus how to design and process nanocomposites more effectively. This in turn will offer us the possibility to significantly reduce the amount of polymer needed for a particular application and therefore help reduce the environmental burden due to plastics waste.”

Further information on work ongoing in the Polymers Cluster in the School of Mechanical and Aerospace Engineering at Queen’s can be found at www.me.qub.ac.uk

Lisa Mitchell | alfa
Further information:
http://www.me.qub.ac.uk

More articles from Ecology, The Environment and Conservation:

nachricht International network connects experimental research in European waters
21.03.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht World Water Day 2017: It doesn’t Always Have to Be Drinking Water – Using Wastewater as a Resource
17.03.2017 | ISOE - Institut für sozial-ökologische Forschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>