Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Norwegian idea leads to Sino-European partnership

Following an initiative taken by SINTEF, the EU and China are launching a project with the aim of cutting global emissions of greenhouse gases. The cooperative effort will give Europe emission quotas for CO2 – and “green” coal-fired power stations to China.

China is in the midst of a mammoth programme of development of coal-fired power stations. Between 2000 and 2004, China built new coal-fired power stations whose capacity was greater than all existing plants in Germany or India. In 2005 alone, the country increased its generating capacity by no less that 52 Gigawatts (GW); in terms of output, more than one Mongstad gas-fired power station a week. If newbuilding continues at the same rate, without CO2 capture, levels of CO2 in the atmosphere will literally hit the skies.

At the same time, it is clear that the low level of costs in China make it much cheaper to build fossil-fuelled power stations with CO2 capture in China than in Europe.

This was the backcloth for SINTEF’s proposal just over a year ago for a Sino-European project that would make it easier to unite the interests of quota-hungry Europeans and electricity-hungry Chinese.

Coal-based electricity – with CO2 capture

The three-year cooperative Coach project, with a budget of €3 million (just over NOK 24 million), which has just been agreed by the EU Commission and China’s Ministry of Science and Technology, started up just before Christmas last year. The project is dedicated to coal-based generation of electricity and fuel – with CO2 capture, and is a twin of the EU’s Dynamis project, which is led by SINTEF.

Dynamis was the start of an offensive aimed at reducing emissions that the EU has launched on the home front. The aim is to develop a full-scale coal or natural gas-fired demonstration plant electricity generation and hydrogen production – with CO2 capture. The plant is to be in operation by 2012 – 2015.

In the Dynamis project, representative of industry and researchers will consider just where in Europe this plant should be located, and what technology it ought to employ. In Coach, eleven European and nine Chinese industrial companies, universities and research organisations will carry out a similar evaluation process – but this time in China.

Easier to find investment objectives

Among other activities of the Coach project, its members will identify which of China’s ageing coal-fired power stations will be replaced by new plants. They will also evaluate which of the new-building projects are most suitable for CO2 capture – and recommend what sort of technology and methods should be used to deal with the CO2 produced by individual power plants.

“The results will make it easier for European companies to circle in development projects that would make attractive investment objects with a view to buying up emission quotas in the future”, says senior scientist Jens Hetland of SINTEF Energy Research, who leads one of the six sub-projects that make up Coach.

Arena for positioning

The SINTEF scientist explains that the project will offer European industry the prospect of benefits in addition to those of buying up quotas.

“Coach will give European suppliers an opportunity to position themselves on a future Chinese market for CO2 capture technology. Coach will also give both Europeans and Chinese the chance to develop joint CO2 technology for use elsewhere in the world”, says Hetland.

Electricity and hydrogen

In order to make itself independent of major imports of oil and gas, China is keen to develop its national energy supply, so that the country’s huge coal deposits can be gasified. This will involve transforming coal into hydrogen-rich gas that can be used as fuel in both power plants and the transport sector, in the form of pure hydrogen and synthetic petrol and diesel oil. With CO2 in plants of this sort, the CO2 is removed before electricity generation and is then deposited, preferably un underground porous rocks.

“The Chinese will also build pure coal-fired power stations in which the CO2 will be removed after the combustion stage. One of the tasks of Coach will be to find out where in China one or the other concept will be most appropriate,” says Hetland.

The French petroleum institute IFP in Paris is coordinator of the Coach project, in which SINTEF has a NOK 3.2 million share.

Aase Dragland | alfa
Further information:

More articles from Ecology, The Environment and Conservation:

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

nachricht Malaysia's unique freshwater mussels in danger
27.09.2016 | The University of Nottingham Malaysia Campus

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>