Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Norwegian idea leads to Sino-European partnership

13.02.2007
Following an initiative taken by SINTEF, the EU and China are launching a project with the aim of cutting global emissions of greenhouse gases. The cooperative effort will give Europe emission quotas for CO2 – and “green” coal-fired power stations to China.

China is in the midst of a mammoth programme of development of coal-fired power stations. Between 2000 and 2004, China built new coal-fired power stations whose capacity was greater than all existing plants in Germany or India. In 2005 alone, the country increased its generating capacity by no less that 52 Gigawatts (GW); in terms of output, more than one Mongstad gas-fired power station a week. If newbuilding continues at the same rate, without CO2 capture, levels of CO2 in the atmosphere will literally hit the skies.

At the same time, it is clear that the low level of costs in China make it much cheaper to build fossil-fuelled power stations with CO2 capture in China than in Europe.

This was the backcloth for SINTEF’s proposal just over a year ago for a Sino-European project that would make it easier to unite the interests of quota-hungry Europeans and electricity-hungry Chinese.

Coal-based electricity – with CO2 capture

The three-year cooperative Coach project, with a budget of €3 million (just over NOK 24 million), which has just been agreed by the EU Commission and China’s Ministry of Science and Technology, started up just before Christmas last year. The project is dedicated to coal-based generation of electricity and fuel – with CO2 capture, and is a twin of the EU’s Dynamis project, which is led by SINTEF.

Dynamis was the start of an offensive aimed at reducing emissions that the EU has launched on the home front. The aim is to develop a full-scale coal or natural gas-fired demonstration plant electricity generation and hydrogen production – with CO2 capture. The plant is to be in operation by 2012 – 2015.

In the Dynamis project, representative of industry and researchers will consider just where in Europe this plant should be located, and what technology it ought to employ. In Coach, eleven European and nine Chinese industrial companies, universities and research organisations will carry out a similar evaluation process – but this time in China.

Easier to find investment objectives

Among other activities of the Coach project, its members will identify which of China’s ageing coal-fired power stations will be replaced by new plants. They will also evaluate which of the new-building projects are most suitable for CO2 capture – and recommend what sort of technology and methods should be used to deal with the CO2 produced by individual power plants.

“The results will make it easier for European companies to circle in development projects that would make attractive investment objects with a view to buying up emission quotas in the future”, says senior scientist Jens Hetland of SINTEF Energy Research, who leads one of the six sub-projects that make up Coach.

Arena for positioning

The SINTEF scientist explains that the project will offer European industry the prospect of benefits in addition to those of buying up quotas.

“Coach will give European suppliers an opportunity to position themselves on a future Chinese market for CO2 capture technology. Coach will also give both Europeans and Chinese the chance to develop joint CO2 technology for use elsewhere in the world”, says Hetland.

Electricity and hydrogen

In order to make itself independent of major imports of oil and gas, China is keen to develop its national energy supply, so that the country’s huge coal deposits can be gasified. This will involve transforming coal into hydrogen-rich gas that can be used as fuel in both power plants and the transport sector, in the form of pure hydrogen and synthetic petrol and diesel oil. With CO2 in plants of this sort, the CO2 is removed before electricity generation and is then deposited, preferably un underground porous rocks.

“The Chinese will also build pure coal-fired power stations in which the CO2 will be removed after the combustion stage. One of the tasks of Coach will be to find out where in China one or the other concept will be most appropriate,” says Hetland.

The French petroleum institute IFP in Paris is coordinator of the Coach project, in which SINTEF has a NOK 3.2 million share.

Aase Dragland | alfa
Further information:
http://www.sintef.no

More articles from Ecology, The Environment and Conservation:

nachricht Bioinvasion on the rise
15.02.2017 | Universität Konstanz

nachricht Litter Levels in the Depths of the Arctic are On the Rise
10.02.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>