Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A Chilling Solution: Measuring Below-ground Carbon Without Destroying Trees

08.12.2006
USDA Forest Service (FS) researchers have provided the first proof of concept for a method that allows scientists to study below-ground carbon allocation in trees without destroying them.

In the latest issue of the journal Plant, Cell and Environment, Kurt Johnsen and fellow researchers at the FS Southern Research Station unit in Research Triangle Park, NC, describe a reversible, non-destructive chilling method that stops the movement of carbon into root systems.

The photosynthetic process of plants has been estimated to account for almost half of the carbon circulating in the Earth’s systems. Reliable data has been developed on carbon cycling in the above-ground processes of trees, but how much carbon is actually moved and stored below the ground has still not been determined. Most methods to study below-ground processes involve destroying the roots as well as the mycorrhizal communities that live symbiotically with root systems

“Below-ground carbon allocation is one of the least understood processes in tree physiology,” says Johnsen. “Being able to accurately measure it is essential for modeling forest and ecosystem productivity and carbon sequestration, but most methods disturb the root-mycorrhizal continuum that plays an essential role in nutrient transport.”

One method of estimating below-ground carbon allocation involves girdling the tree, cutting through the phloem to stop the movement of carbon into roots. This method leaves the root-mycorrhizal continuum intact, but still destroys the tree. Johnsen and his fellow researchers decided to try chilling the phloem to temporarily interrupt carbon movement and leave the tree alive. Though the technique has been used on herbaceous plants in controlled environments, Johnsen’s experiment represents the first test of the method on trees and, in particular, on large trees in the field.

The researchers chilled the phloem of 10 loblolly pine trees in a stand that receives annual fertilization, comparing responses with those from physically girdled trees in both fertilized and unfertilized stands to determine whether the technique would give accurate results. They wrapped each tree in 30 coils of copper tubing, then circulated anti-freeze cooled to less than 35 degrees Fahrenheit through the tubing, measuring carbon dioxide efflux from the soil to determine if carbon movement was reduced The researchers hypothesized that carbon movement in trees would differ at varying points in the year; this was confirmed in their study.

“There was no response to either chilling or physical girdling in the experiments we did in the spring,” says Johnsen. “We think this is because above-ground growth was so rapid and below-ground processes were getting carbon from starch reserves.”

Fall experiments, however, showed that both chilling and girdling rapidly reduced soil carbon dioxide efflux, showing that both techniques stop or reduce the movement below ground of carbon recently produced by photosynthesis. The difference is that once the chilling was stopped, the effect was rapidly reversed, while the physically girdled trees died.

“This phloem-chilling method can be applied to the same trees at various times of the year and under a variety of environmental conditions, giving us the means to generate robust estimates of carbon allocation needed to construct more realistic and reliable carbon cycle models,” says Johnsen.

For more information:
Kurt Johnsen at 919-549-4270 or kjohnsen@fs.fed.us

Kurt Johnsen | EurekAlert!
Further information:
http://www.srs.fs.usda.gov/pubs/25136

More articles from Ecology, The Environment and Conservation:

nachricht A new indicator for marine ecosystem changes: the diatom/dinoflagellate index
21.08.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

nachricht Value from wastewater
16.08.2017 | Hochschule Landshut

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Nagoya physicists resolve long-standing mystery of structure-less transition

21.08.2017 | Materials Sciences

Chronic stress induces fatal organ dysfunctions via a new neural circuit

21.08.2017 | Health and Medicine

Scientists from the MSU studied new liquid-crystalline photochrom

21.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>