Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A Chilling Solution: Measuring Below-ground Carbon Without Destroying Trees

08.12.2006
USDA Forest Service (FS) researchers have provided the first proof of concept for a method that allows scientists to study below-ground carbon allocation in trees without destroying them.

In the latest issue of the journal Plant, Cell and Environment, Kurt Johnsen and fellow researchers at the FS Southern Research Station unit in Research Triangle Park, NC, describe a reversible, non-destructive chilling method that stops the movement of carbon into root systems.

The photosynthetic process of plants has been estimated to account for almost half of the carbon circulating in the Earth’s systems. Reliable data has been developed on carbon cycling in the above-ground processes of trees, but how much carbon is actually moved and stored below the ground has still not been determined. Most methods to study below-ground processes involve destroying the roots as well as the mycorrhizal communities that live symbiotically with root systems

“Below-ground carbon allocation is one of the least understood processes in tree physiology,” says Johnsen. “Being able to accurately measure it is essential for modeling forest and ecosystem productivity and carbon sequestration, but most methods disturb the root-mycorrhizal continuum that plays an essential role in nutrient transport.”

One method of estimating below-ground carbon allocation involves girdling the tree, cutting through the phloem to stop the movement of carbon into roots. This method leaves the root-mycorrhizal continuum intact, but still destroys the tree. Johnsen and his fellow researchers decided to try chilling the phloem to temporarily interrupt carbon movement and leave the tree alive. Though the technique has been used on herbaceous plants in controlled environments, Johnsen’s experiment represents the first test of the method on trees and, in particular, on large trees in the field.

The researchers chilled the phloem of 10 loblolly pine trees in a stand that receives annual fertilization, comparing responses with those from physically girdled trees in both fertilized and unfertilized stands to determine whether the technique would give accurate results. They wrapped each tree in 30 coils of copper tubing, then circulated anti-freeze cooled to less than 35 degrees Fahrenheit through the tubing, measuring carbon dioxide efflux from the soil to determine if carbon movement was reduced The researchers hypothesized that carbon movement in trees would differ at varying points in the year; this was confirmed in their study.

“There was no response to either chilling or physical girdling in the experiments we did in the spring,” says Johnsen. “We think this is because above-ground growth was so rapid and below-ground processes were getting carbon from starch reserves.”

Fall experiments, however, showed that both chilling and girdling rapidly reduced soil carbon dioxide efflux, showing that both techniques stop or reduce the movement below ground of carbon recently produced by photosynthesis. The difference is that once the chilling was stopped, the effect was rapidly reversed, while the physically girdled trees died.

“This phloem-chilling method can be applied to the same trees at various times of the year and under a variety of environmental conditions, giving us the means to generate robust estimates of carbon allocation needed to construct more realistic and reliable carbon cycle models,” says Johnsen.

For more information:
Kurt Johnsen at 919-549-4270 or kjohnsen@fs.fed.us

Kurt Johnsen | EurekAlert!
Further information:
http://www.srs.fs.usda.gov/pubs/25136

More articles from Ecology, The Environment and Conservation:

nachricht Preservation of floodplains is flood protection
27.09.2017 | Technische Universität München

nachricht Conservationists are sounding the alarm: parrots much more threatened than assumed
15.09.2017 | Justus-Liebig-Universität Gießen

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Ocean atmosphere rife with microbes

17.10.2017 | Life Sciences

Neutrons observe vitamin B6-dependent enzyme activity useful for drug development

17.10.2017 | Life Sciences

NASA finds newly formed tropical storm lan over open waters

17.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>