Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A Chilling Solution: Measuring Below-ground Carbon Without Destroying Trees

08.12.2006
USDA Forest Service (FS) researchers have provided the first proof of concept for a method that allows scientists to study below-ground carbon allocation in trees without destroying them.

In the latest issue of the journal Plant, Cell and Environment, Kurt Johnsen and fellow researchers at the FS Southern Research Station unit in Research Triangle Park, NC, describe a reversible, non-destructive chilling method that stops the movement of carbon into root systems.

The photosynthetic process of plants has been estimated to account for almost half of the carbon circulating in the Earth’s systems. Reliable data has been developed on carbon cycling in the above-ground processes of trees, but how much carbon is actually moved and stored below the ground has still not been determined. Most methods to study below-ground processes involve destroying the roots as well as the mycorrhizal communities that live symbiotically with root systems

“Below-ground carbon allocation is one of the least understood processes in tree physiology,” says Johnsen. “Being able to accurately measure it is essential for modeling forest and ecosystem productivity and carbon sequestration, but most methods disturb the root-mycorrhizal continuum that plays an essential role in nutrient transport.”

One method of estimating below-ground carbon allocation involves girdling the tree, cutting through the phloem to stop the movement of carbon into roots. This method leaves the root-mycorrhizal continuum intact, but still destroys the tree. Johnsen and his fellow researchers decided to try chilling the phloem to temporarily interrupt carbon movement and leave the tree alive. Though the technique has been used on herbaceous plants in controlled environments, Johnsen’s experiment represents the first test of the method on trees and, in particular, on large trees in the field.

The researchers chilled the phloem of 10 loblolly pine trees in a stand that receives annual fertilization, comparing responses with those from physically girdled trees in both fertilized and unfertilized stands to determine whether the technique would give accurate results. They wrapped each tree in 30 coils of copper tubing, then circulated anti-freeze cooled to less than 35 degrees Fahrenheit through the tubing, measuring carbon dioxide efflux from the soil to determine if carbon movement was reduced The researchers hypothesized that carbon movement in trees would differ at varying points in the year; this was confirmed in their study.

“There was no response to either chilling or physical girdling in the experiments we did in the spring,” says Johnsen. “We think this is because above-ground growth was so rapid and below-ground processes were getting carbon from starch reserves.”

Fall experiments, however, showed that both chilling and girdling rapidly reduced soil carbon dioxide efflux, showing that both techniques stop or reduce the movement below ground of carbon recently produced by photosynthesis. The difference is that once the chilling was stopped, the effect was rapidly reversed, while the physically girdled trees died.

“This phloem-chilling method can be applied to the same trees at various times of the year and under a variety of environmental conditions, giving us the means to generate robust estimates of carbon allocation needed to construct more realistic and reliable carbon cycle models,” says Johnsen.

For more information:
Kurt Johnsen at 919-549-4270 or kjohnsen@fs.fed.us

Kurt Johnsen | EurekAlert!
Further information:
http://www.srs.fs.usda.gov/pubs/25136

More articles from Ecology, The Environment and Conservation:

nachricht Global threat to primates concerns us all
19.01.2017 | Deutsches Primatenzentrum GmbH - Leibniz-Institut für Primatenforschung

nachricht Reducing household waste with less energy
18.01.2017 | FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists spin artificial silk from whey protein

X-ray study throws light on key process for production

A Swedish-German team of researchers has cleared up a key process for the artificial production of silk. With the help of the intense X-rays from DESY's...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Breaking the optical bandwidth record of stable pulsed lasers

24.01.2017 | Physics and Astronomy

Choreographing the microRNA-target dance

24.01.2017 | Life Sciences

Spanish scientists create a 3-D bioprinter to print human skin

24.01.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>