Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ocean sampling yields environmental sources of coral symbionts

05.12.2006
By sampling different ocean locations for the presence of an elusive but critical group of algae, researchers have gained new insight into the dwelling places of the symbiotic organisms that reef corals need for survival.

The symbiosis between special algal species and reef corals is the foundation of a highly productive and biologically complex ecosystem, but our understanding of how this symbiosis is established by new corals has been limited by the fact that the symbiotic algae are difficult to find and study in the ocean.

But now a group of researchers has successfully identified algae of the genus known to represent coral symbionts, and has gone on to show that the isolated algae are indeed capable of establishing symbioses with new corals. The findings, which potentially bolster future efforts to protect and rehabilitate coral reefs, are reported by a group including Mary Alice Coffroth of the University at Buffalo and appear in the December 5th issue of Current Biology.

In response to environmental stresses, coral reefs around the world are in a decline due in large part to coral bleaching—loss of the symbiotic photosynthetic algae that live within corals and provide much of their energy. These symbiotic algae are essential to their host’s survival, but many corals must acquire their symbionts anew with the emergence of each generation. However, it has remained unclear how newly settled coral polyps acquire their symbionts in the ocean.

Organisms that resemble coral symbionts—dinoflagellates that are similar to those of the Symbiodinium genus that grow within corals—have been isolated from both sand and the water column; however, neither the locations of these populations nor their ability to establish symbioses is known. For both our understanding of reef ecosystems and their conservation, it is critical to recognize where these symbionts reside in the ocean environment.

In the new work, the researchers succeeded in identifying Symbiodinium in the water column as well as on ocean-bottom substrates. Most importantly, the researchers also demonstrated that a subset of Symbiodinium found in the water and on benthic substrates (that is, on algae and sediments) can infect new coral polyps. These isolates are therefore capable of establishing symbioses with corals and thus point to environmental sources of symbionts that may prove important in the recovery of reef-building corals after bleaching events.

Heidi Hardman | EurekAlert!
Further information:
http://www.current-biology.com

More articles from Ecology, The Environment and Conservation:

nachricht Bioinvasion on the rise
15.02.2017 | Universität Konstanz

nachricht Litter Levels in the Depths of the Arctic are On the Rise
10.02.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>