Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Extraordinary life found around deep-sea gas seeps

Scientists observe for the first time bizarre deep-sea communities around methane seeps off New Zealand coast

An international team led by scientists from the United States and New Zealand have observed, for the first time, the bizarre deep-sea communities living around methane seeps off New Zealand's east coast.

'This is the first time cold seeps have been viewed and sampled in the southwest Pacific, and will greatly contribute to our knowledge of these intriguing ecosystems,' says Dr Amy Baco-Taylor, from the Woods Hole Oceanographic Institution (WHOI) in Massachusetts, who co-led the voyage with Dr Ashley Rowden from New Zealand's National Institute of Water & Atmospheric Research (NIWA).

The 21-member expedition – led by scientists from WHOI, NIWA, the Scripps Institution of Oceanography, and the University of Hawaii at Manoa (UH) – has spent the last two weeks exploring cold water seeps and other 'chemosynthetic' ecosystems around New Zealand's east coast onboard NIWA's deepwater research vessel Tangaroa.

Cold seeps are areas of the seafloor where methane gas or hydrogen sulphide escapes from large stores deep below. Like hydrothermal vents, cold seeps support unique communities of animals living in symbiosis with microbes that can convert these energy-rich chemicals to living matter (a form of 'chemosynthesis') in the absence of sunlight.

New Zealand is one of the few places in the world where at least four types of chemosynthetic habitats occur in close proximity, allowing scientists to address key questions about the patterns of biological distribution that cannot be addressed elsewhere.

The team visited eight cold seep sites on the continental slope to the east of the North Island, lying at depths of 750–1050 m.

'We discovered that one of these sites, "The Builder's Pencil", covers about 180 000 square metres (0.18 square kilometre), making it one of the largest seep sites in the world', says Dr Rowden.

A few cold seep sites were previously known along the New Zealand coast from geological and biogeochemical studies of the continental margin. But this is the first time the biodiversity of the animal communities living at these sites has been observed directly and thoroughly documented, providing the first discovery of cold seep communities in the entire southwest Pacific.

'The nearest known cold seep communities that have been biologically described are off Chile and Japan. The seeps off New Zealand are also remarkable in the sheer extent of their chemosynthetic communities,' says Dr Baco-Taylor.

The team pinpointed potential seep sites using sophisticated sonar to map seafloor topography and substrate and to detect plumes of methane-enriched water. The scientists then lowered a towed video and still camera system over each site to identify seep organisms and the extent of the seafloor they covered.

With the live video feed, the scientists observed 30–40 cm long tube worms emerging from beneath limestone boulders and slabs lying at the core of the seeps. Around the rocks were patches of blackened sediment and pockets of white bacterial mats. Most sites also had extensive shell beds consisting of live and dead shells of various types of clams and mussels. These were fringed with stands of another type of deep-sea tube worm that is also gutless and relies on symbiotic bacteria for its nutrition. Corals and, at two of the sites, numerous sponges, were also observed.

'We've collected samples of the animals living around the seeps for formal identification, but the distance to previously studied cold seeps implies that there are several species new to science among these new collections,' says Dr Rowden.

The team has also collected samples of the sediment and water surrounding the seeps for chemical analysis and used sonar to study the geological structures lying beneath them.

The discovery of so many sites suggests that cold seeps are very abundant along New Zealand's eastern continental margin. However, this expedition also revealed the extent to which these communities may face serious threats from human activities. At all of the seep sites, there was evidence of fishing damage in the form of trawl marks, lost fishing gear, and extensive areas of deep-sea coral rubble.

Dr. Fiona Proffitt | EurekAlert!
Further information:

More articles from Ecology, The Environment and Conservation:

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

nachricht Malaysia's unique freshwater mussels in danger
27.09.2016 | The University of Nottingham Malaysia Campus

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>