Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Clemson research cleans up with edible oil

15.09.2006
Oil and water don’t mix, and that could be the key to edible vegetable-based oil being the answer to contaminant clean-up.

Clemson University researchers, in conjunction with the Savannah River National Laboratory (SRNL), are testing vegetable oil as a way to prevent contaminants from getting into groundwater aquifers. They say the method has the potential to help clean up chlorinated solvents, which are among the most common groundwater contaminants caused by industry. The study, which is taking place at the U.S. Department of Energy’s Savannah River Site, is funded with a $35,000 grant from SRS through the South Carolina Universities Research and Education Foundation (SCUREF).

Clemson University geologist Larry Murdoch said the oil is injected through hydraulic fractures made 20 to 30 feet into the ground. When injected, the vegetable oil draws in oil-based contaminants that have leaked from pipes or tanks. If mixed with water, the contaminants separate as droplets, with small amounts dissolving into the water and making it hazardous. But, if another oil is introduced, the contaminants steer clear of the water, drawn instead towards the edible-oil source.

“Something else can happen to clean up the contaminants,” said Murdoch. “Some microbes in the ground subsurface will degrade solvents. The edible oils create the right conditions for those kinds of microbes to flourish, so they seek out the contaminants and break them down. We hope the oil will both trap and destroy contaminants underground.”

SRNL Laboratory Director Todd Wright of Washington Savannah River Company said collaborative research that combines the expertise at Clemson with that of SRNL is one of the best ways to advance the development of new methods for cleaning up and restoring the environment.

“By working together, making use of our respective knowledge bases, we can add new, cost-effective tools to the nation’s toolbox for addressing widespread environmental issues,” he said.

Since February, SRNL investigators have monitored levels of contaminant vapors and other indicators to determine whether the oil is attracting the contaminants at the test site. Murdoch said preliminary results are exciting, suggesting the process is working as anticipated. The project wraps up at the end of September.

Larry Murdoch | EurekAlert!
Further information:
http://www.clemson.edu

More articles from Ecology, The Environment and Conservation:

nachricht Bioinvasion on the rise
15.02.2017 | Universität Konstanz

nachricht Litter Levels in the Depths of the Arctic are On the Rise
10.02.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>