Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Ammonia-loving archaea win landslide majority

A genetic analysis of soil samples indicates that a group of microorganisms called crenarchaeota are the Earth's most abundant land-based creatures that oxidize ammonia, according to an international team of researchers from Norway, Germany, United Kingdom and the United States.

Soil microbes, in a process known as nitrification, combine ammonia with oxygen to form nitrates, which are used as nutrients by plants.

"Ammonia oxidation is an important step in the nitrogen cycle that was believed for the last 100 years to be solely performed by bacteria," says Christa Schleper, full professor of Molecular biology of Archaea at University Bergen, Norway.

The discovery was made possible by a combination of different techniques ranging from molecular biology, biochemistry to metagenomics. Using a novel sequencing technique and bioinformatics tools, Stephan C. Schuster, associate professor of biochemistry and molecular biology at Penn State, and his co-workers accurately measured the quantities of active bacteria and archaea in the complex mixtures of soil organisms. The international research team reports their findings in today's (Aug. 17) issue of Nature.

Archaea are single-celled microbes that, along with bacteria, comprise a category of small organisms whose genetic material, or DNA, is not stored in a nucleus (as it is in animals and plants). Crenarchaeota, which belong to the archaea, are found in various habitats, including soil.

"We think crenarchaeota in soil gain their energy from oxidizing ammonia," said Schuster. "But we don't know yet if they can also gain energy by other means. The bacterial counterparts can only do ammonia (and urea) oxidation, nothing else."

During a recent study of a collection of genes in microorganisms, researchers had stumbled on a particular gene, which is responsible for the production of a key enzyme used for the oxidation of ammonia.

The gene was subsequently found in a marine strain of archaea that uses ammonia as its sole source of energy. Researchers examined soil samples from 12 pristine and agricultural lands across three climatic zones to see if such ammonia-oxidizing microorganisms were present in terrestrial ecosystems as well.

"We measured the abundance of the particular crenarchaeota gene alongside the same type of gene from bacteria," explains Schleper.

The tally suggested that copies of the archaeal gene in the soil samples were up to 3,000 times more abundant than copies of the bacterial gene. High amounts of lipids specific to crenarchaeota confirmed the organism's presence.

At Penn State, Schuster used a novel technique to directly sequence only the transcribed portion of the genomes from soil organisms, thus giving proof that crenarchaeota are in fact active and not just dormant residents in the soil.

Crenarchaeotal gene counts also do not change with soil depth, while bacterial gene counts drop significantly as one goes deeper.

"It might mean that they can oxidize ammonia at least with less oxygen and probably also with less ammonia, but we don't know for sure. Our data clearly say, that the archaea are more versatile in their life style than bacteria," says Schuster, also a researcher at Penn State's Centers for Infectious Disease Dynamics and Comparative Genomics and Bioinformatics.

Despite their abundance, it is not yet clear if crenarchaeota oxidize more ammonia than regular bacteria, and what that might mean for the ecological impact of ammonia oxidation, or the nitrogen cycle. We will have to study the nitrification activity of archaea and their underlying biochemistry, says Schleper, who initiated the study.

"Perhaps the measured amounts of greenhouse gases such as nitric oxide and nitrous oxide are not produced by bacteria, but by a very different group of organisms, namely archaea," said Schleper. "But it is not clear, if and in what amounts the archaea form these gases as byproducts. This is only known from some of the respective bacteria," Schleper adds.

Amitabh Avasthi | EurekAlert!
Further information:

More articles from Ecology, The Environment and Conservation:

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

nachricht Malaysia's unique freshwater mussels in danger
27.09.2016 | The University of Nottingham Malaysia Campus

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>