Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ammonia-loving archaea win landslide majority

21.08.2006
A genetic analysis of soil samples indicates that a group of microorganisms called crenarchaeota are the Earth's most abundant land-based creatures that oxidize ammonia, according to an international team of researchers from Norway, Germany, United Kingdom and the United States.

Soil microbes, in a process known as nitrification, combine ammonia with oxygen to form nitrates, which are used as nutrients by plants.

"Ammonia oxidation is an important step in the nitrogen cycle that was believed for the last 100 years to be solely performed by bacteria," says Christa Schleper, full professor of Molecular biology of Archaea at University Bergen, Norway.

The discovery was made possible by a combination of different techniques ranging from molecular biology, biochemistry to metagenomics. Using a novel sequencing technique and bioinformatics tools, Stephan C. Schuster, associate professor of biochemistry and molecular biology at Penn State, and his co-workers accurately measured the quantities of active bacteria and archaea in the complex mixtures of soil organisms. The international research team reports their findings in today's (Aug. 17) issue of Nature.

Archaea are single-celled microbes that, along with bacteria, comprise a category of small organisms whose genetic material, or DNA, is not stored in a nucleus (as it is in animals and plants). Crenarchaeota, which belong to the archaea, are found in various habitats, including soil.

"We think crenarchaeota in soil gain their energy from oxidizing ammonia," said Schuster. "But we don't know yet if they can also gain energy by other means. The bacterial counterparts can only do ammonia (and urea) oxidation, nothing else."

During a recent study of a collection of genes in microorganisms, researchers had stumbled on a particular gene, which is responsible for the production of a key enzyme used for the oxidation of ammonia.

The gene was subsequently found in a marine strain of archaea that uses ammonia as its sole source of energy. Researchers examined soil samples from 12 pristine and agricultural lands across three climatic zones to see if such ammonia-oxidizing microorganisms were present in terrestrial ecosystems as well.

"We measured the abundance of the particular crenarchaeota gene alongside the same type of gene from bacteria," explains Schleper.

The tally suggested that copies of the archaeal gene in the soil samples were up to 3,000 times more abundant than copies of the bacterial gene. High amounts of lipids specific to crenarchaeota confirmed the organism's presence.

At Penn State, Schuster used a novel technique to directly sequence only the transcribed portion of the genomes from soil organisms, thus giving proof that crenarchaeota are in fact active and not just dormant residents in the soil.

Crenarchaeotal gene counts also do not change with soil depth, while bacterial gene counts drop significantly as one goes deeper.

"It might mean that they can oxidize ammonia at least with less oxygen and probably also with less ammonia, but we don't know for sure. Our data clearly say, that the archaea are more versatile in their life style than bacteria," says Schuster, also a researcher at Penn State's Centers for Infectious Disease Dynamics and Comparative Genomics and Bioinformatics.

Despite their abundance, it is not yet clear if crenarchaeota oxidize more ammonia than regular bacteria, and what that might mean for the ecological impact of ammonia oxidation, or the nitrogen cycle. We will have to study the nitrification activity of archaea and their underlying biochemistry, says Schleper, who initiated the study.

"Perhaps the measured amounts of greenhouse gases such as nitric oxide and nitrous oxide are not produced by bacteria, but by a very different group of organisms, namely archaea," said Schleper. "But it is not clear, if and in what amounts the archaea form these gases as byproducts. This is only known from some of the respective bacteria," Schleper adds.

Amitabh Avasthi | EurekAlert!
Further information:
http://www.psu.edu

More articles from Ecology, The Environment and Conservation:

nachricht Scientists produce a new roadmap for guiding development & conservation in the Amazon
09.12.2016 | Wildlife Conservation Society

nachricht Successful calculation of human and natural influence on cloud formation
04.11.2016 | Goethe-Universität Frankfurt am Main

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>