Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ammonia-loving archaea win landslide majority

21.08.2006
A genetic analysis of soil samples indicates that a group of microorganisms called crenarchaeota are the Earth's most abundant land-based creatures that oxidize ammonia, according to an international team of researchers from Norway, Germany, United Kingdom and the United States.

Soil microbes, in a process known as nitrification, combine ammonia with oxygen to form nitrates, which are used as nutrients by plants.

"Ammonia oxidation is an important step in the nitrogen cycle that was believed for the last 100 years to be solely performed by bacteria," says Christa Schleper, full professor of Molecular biology of Archaea at University Bergen, Norway.

The discovery was made possible by a combination of different techniques ranging from molecular biology, biochemistry to metagenomics. Using a novel sequencing technique and bioinformatics tools, Stephan C. Schuster, associate professor of biochemistry and molecular biology at Penn State, and his co-workers accurately measured the quantities of active bacteria and archaea in the complex mixtures of soil organisms. The international research team reports their findings in today's (Aug. 17) issue of Nature.

Archaea are single-celled microbes that, along with bacteria, comprise a category of small organisms whose genetic material, or DNA, is not stored in a nucleus (as it is in animals and plants). Crenarchaeota, which belong to the archaea, are found in various habitats, including soil.

"We think crenarchaeota in soil gain their energy from oxidizing ammonia," said Schuster. "But we don't know yet if they can also gain energy by other means. The bacterial counterparts can only do ammonia (and urea) oxidation, nothing else."

During a recent study of a collection of genes in microorganisms, researchers had stumbled on a particular gene, which is responsible for the production of a key enzyme used for the oxidation of ammonia.

The gene was subsequently found in a marine strain of archaea that uses ammonia as its sole source of energy. Researchers examined soil samples from 12 pristine and agricultural lands across three climatic zones to see if such ammonia-oxidizing microorganisms were present in terrestrial ecosystems as well.

"We measured the abundance of the particular crenarchaeota gene alongside the same type of gene from bacteria," explains Schleper.

The tally suggested that copies of the archaeal gene in the soil samples were up to 3,000 times more abundant than copies of the bacterial gene. High amounts of lipids specific to crenarchaeota confirmed the organism's presence.

At Penn State, Schuster used a novel technique to directly sequence only the transcribed portion of the genomes from soil organisms, thus giving proof that crenarchaeota are in fact active and not just dormant residents in the soil.

Crenarchaeotal gene counts also do not change with soil depth, while bacterial gene counts drop significantly as one goes deeper.

"It might mean that they can oxidize ammonia at least with less oxygen and probably also with less ammonia, but we don't know for sure. Our data clearly say, that the archaea are more versatile in their life style than bacteria," says Schuster, also a researcher at Penn State's Centers for Infectious Disease Dynamics and Comparative Genomics and Bioinformatics.

Despite their abundance, it is not yet clear if crenarchaeota oxidize more ammonia than regular bacteria, and what that might mean for the ecological impact of ammonia oxidation, or the nitrogen cycle. We will have to study the nitrification activity of archaea and their underlying biochemistry, says Schleper, who initiated the study.

"Perhaps the measured amounts of greenhouse gases such as nitric oxide and nitrous oxide are not produced by bacteria, but by a very different group of organisms, namely archaea," said Schleper. "But it is not clear, if and in what amounts the archaea form these gases as byproducts. This is only known from some of the respective bacteria," Schleper adds.

Amitabh Avasthi | EurekAlert!
Further information:
http://www.psu.edu

More articles from Ecology, The Environment and Conservation:

nachricht Safeguarding sustainability through forest certification mapping
27.06.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht Dune ecosystem modelling
26.06.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Mice provide insight into genetics of autism spectrum disorders

28.06.2017 | Health and Medicine

New photoacoustic technique detects gases at parts-per-quadrillion level

28.06.2017 | Physics and Astronomy

Funding of Collaborative Research Center developing nanomaterials for cancer immunotherapy extended

28.06.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>