Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Drug discovery team to explore newly discovered deep-sea reefs

23.05.2006


From May 22-30, Harbor Branch scientists, along with colleagues from the University of Miami, will use the Harbor Branch Johnson-Sea-Link II submersible to explore for the first time newly discovered deep-sea reefs between Florida and the Bahamas. The reefs were discovered in 2,000 to 2,900 feet of water last December by a University of Miami team using advanced sonar techniques. A primary goal of the upcoming expedition, which is funded largely by the State of Florida’s "Florida Oceans Initiative," will be to search for marine organisms that produce chemical compounds with the potential to treat human diseases such as cancer and Alzheimer’s.



"We’ve found incredible and surprising diversity at other deepwater reefs near Miami and Bimini, and some promising potential disease treatments, so we’re very excited about the chance to explore these new areas," says Amy Wright, director of the Harbor Branch Division of Biomedical Marine Research.

Researchers have suspected since the 1970s that deep reefs lay undiscovered between Miami and Bimini because pieces of reef-building corals had been brought up using surface-operated dredge and grab sampling equipment. However, just as the vast majority of the ocean remains poorly mapped and unexplored--even off Miami--these potentially important areas remained unseen.


In December of 2005, as part of the National Oceanic and Atmospheric Administrations Ocean Exploration program, University of Miami researchers, led by geophysicist Mark Grasmueck and geologist Gergor Eberli, began mapping deepwater habitats off Miami and Bimini using an autonomous underwater vehicle (AUV) equipped with advanced sonar technology. AUVs operate without a tether to the surface and are pre-programmed to independently perform tasks. AUVs have been frequently used in oil exploration and also in a variety of other research programs for mapping purposes, but the Miami researchers believe this is the first time an AUV has been used to map deepwater coral reefs.

Miami’s December AUV work revealed what appears to be an extensive system of steep slopes and mounds as high as 350 feet, all of which are likely to harbor a wide array of sponges, corals, fish, and other animals. A camera developed at the University of Miami allowed researchers to get an enticing glimpse of the bottom, but until researchers make it to the seafloor in the submersible they will not be able to determine the extent and biological diversity of the newly discovered reefs. Harbor Branch has discovered a number of other new deepwater reefs in Florida waters in recent years that play important ecological roles, but has never before had the chance to explore this area.

From May 22-26, the team will be working at sites on the Bahamas side of the Straits of Florida, about 10 miles from Bimini. From May 27-30 they will be on the Florida side, beginning about 20 miles out from Miami, though all the reefs are part of the same geological system. After a quick personnel and equipment turnaround, Harbor Branch researchers will return to the Miami area on a separate expedition from May 31 to June 9 to conduct the first in depth survey of deep reef areas in the region to better assess the ecological importance of the reefs and to identify factors responsible for their incredible diversity.

Researchers typically have to spend hours using a ship depth sounder to map an area before determining where to do submersible dives because maps detailed enough to show the telltale mounds and other features of deepwater reefs simply do not exist for the bulk of the seafloor. With such little information available, Grasmueck compares typical seafloor exploration to arriving on the bottom of the Grand Canyon at night with a flashlight and then attempting to ascertain the significance and topography of the whole canyon based on small swaths revealed by the flashlight. The Miami AUV work has instead made it possible to choose dive sites likely to be vibrant reef areas ahead of time, all with an understanding of the full system being explored.

The expedition will have two main goals. First, the team will use the submersible to explore those seafloor areas that appear most promising based on their sonar map contours. As this "ground truthing" work progresses, the team will be able to better predict correlations between map data and biodiversity on the bottom. Ultimately this will allow them to more accurately assess the ecological importance of the entire area, not just those small swaths observed from the submersible.

During each submersible dive, Harbor Branch experts will be collecting samples of organisms such as sponges and corals that will be tested to determine if they, or microorganisms living within them, produce chemicals with pharmaceutical potential. A key goal is to find and collect organisms that have never been seen, which happens on almost every one of the Harbor Branch team’s expeditions. Other organisms will also be collected because even well known species can produce different and potentially important chemicals depending on the depth, temperature, and location at which they are found.

Harbor Branch’s quest for drugs from the sea began in the early 1980s and has led to the collection of tens of thousands of marine organism samples and the identification of a number of promising potential drugs now in various stages of development for treating cancer, Alzheimer’s, malaria, AIDS and other ailments.

Mark Schrope | EurekAlert!
Further information:
http://www.hboi.edu

More articles from Ecology, The Environment and Conservation:

nachricht International network connects experimental research in European waters
21.03.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht World Water Day 2017: It doesn’t Always Have to Be Drinking Water – Using Wastewater as a Resource
17.03.2017 | ISOE - Institut für sozial-ökologische Forschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

NASA examines Peru's deadly rainfall

24.03.2017 | Earth Sciences

What does congenital Zika syndrome look like?

24.03.2017 | Health and Medicine

Steep rise of the Bernese Alps

24.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>