Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


RIT Students Design Deep-Sea Explorer to Search for Lake Ontario Shipwrecks


It’s designed to explore the depths of large bodies of water—and one recent weekend, that’s exactly where it was found: searching the depths of the deep end of Judson Pool in Rochester Institute of Technology’s Gordon Field House and Activities Center. (As the adage goes, every journey begins with a single step.)

A team of RIT engineering majors built the explorer, an underwater remote-operated vehicle, or ROV—and it has been described as one of the most ambitious student projects ever at RIT. This spring and summer, the device will be used to explore century-old shipwrecks resting on the bottom of Lake Ontario and the Atlantic Ocean—giving human explorers their first glimpses of some all-but-forgotten vessels lost to the seas.

The nine-member RIT team is led by Dan Scoville, a 2005 RIT graduate who has located and explored three “virgin” (previously undiscovered) shipwrecks in Lake Ontario in the past five years. Scoville, who personally backed the ROV project financially, now has his sights set on two undisclosed Lake Ontario shipwrecks (one is an 1800s-era schooner—the names and precise locations of the vessels won’t be revealed until this fall) and, working with the Undersea Research Center at the University of Connecticut, the steamship Portland, which sank off the coast of Gloucester, Mass, in 1898.

Some of the fewer than a thousand ships lost in Lake Ontario have been discovered and salvaged, while others are in water too deep to explore, Scoville says. That leaves a small number—perhaps a dozen—in the 100-to-400-foot-depth range in the area from the Niagara River to Oswego accessible to explorers such as Scoville. But they’re not easily found, Scoville says. Even after they’re located, they can’t be salvaged because those between the shores of New York and the international line are considered state property.

“We do it because we love doing it,” says Scoville, an electrical engineer with Hydroacoustics Inc. and a scuba diver for about 10 years. “When you find one, it’s neat. It’s a really cool experience.

Little device makes a big splash

The small, 60-pound, battery-powered ROV, designed and built over two quarters, is equipped with up to four removable video cameras, four high-intensity lamps (serving, in essence, as headlights), a navigational compass, a timer, and sensors to measure depth, pressure and temperature. Four variable-speed motors enable vertical, forward and reverse movement and turning maneuverability. RIT students custom-built most circuit boards, wrote the software and created the graphical user interface used to control the device. All components are housed in watertight canisters (using 88 seals); a lightweight aluminum frame is rugged and modifiable.

The explorer is controlled by a joystick attached to a laptop computer that communicates with a microprocessor (the ROV’s “command center”) via a 680-foot-long fiber-optic cable. A human at the controls sees what the ROV “sees” through live video streaming and sensor readings.

The device is capable of diving at about two feet per second to a depth of 400 feet—about twice as deep as a skilled scuba diver can descend. A foam top helps achieve neutral buoyancy, enabling the ROV to remain level while underwater. A 100-minute battery life allows it to stay underwater longer than human divers. Future enhancements may include the addition of a mechanical arm and extended diving capability—perhaps enabling the explorer to reach Lake Ontario’s maximum depth of about 800 feet.

Building the ROV cost the RIT team about $15,000, including $10,000 from sponsors. An equivalent commercially produced underwater ROV would cost $20,000 to $50,000, Scoville says. He describes the members of his team as not merely students, but skilled, practicing engineers.

“I lucked out with a really good team,” he says. “We were told it couldn’t be done.”

Michael Saffran | EurekAlert!
Further information:

More articles from Ecology, The Environment and Conservation:

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

nachricht Malaysia's unique freshwater mussels in danger
27.09.2016 | The University of Nottingham Malaysia Campus

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>