Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

RIT Students Design Deep-Sea Explorer to Search for Lake Ontario Shipwrecks

22.05.2006


It’s designed to explore the depths of large bodies of water—and one recent weekend, that’s exactly where it was found: searching the depths of the deep end of Judson Pool in Rochester Institute of Technology’s Gordon Field House and Activities Center. (As the adage goes, every journey begins with a single step.)



A team of RIT engineering majors built the explorer, an underwater remote-operated vehicle, or ROV—and it has been described as one of the most ambitious student projects ever at RIT. This spring and summer, the device will be used to explore century-old shipwrecks resting on the bottom of Lake Ontario and the Atlantic Ocean—giving human explorers their first glimpses of some all-but-forgotten vessels lost to the seas.

The nine-member RIT team is led by Dan Scoville, a 2005 RIT graduate who has located and explored three “virgin” (previously undiscovered) shipwrecks in Lake Ontario in the past five years. Scoville, who personally backed the ROV project financially, now has his sights set on two undisclosed Lake Ontario shipwrecks (one is an 1800s-era schooner—the names and precise locations of the vessels won’t be revealed until this fall) and, working with the Undersea Research Center at the University of Connecticut, the steamship Portland, which sank off the coast of Gloucester, Mass, in 1898.


Some of the fewer than a thousand ships lost in Lake Ontario have been discovered and salvaged, while others are in water too deep to explore, Scoville says. That leaves a small number—perhaps a dozen—in the 100-to-400-foot-depth range in the area from the Niagara River to Oswego accessible to explorers such as Scoville. But they’re not easily found, Scoville says. Even after they’re located, they can’t be salvaged because those between the shores of New York and the international line are considered state property.

“We do it because we love doing it,” says Scoville, an electrical engineer with Hydroacoustics Inc. and a scuba diver for about 10 years. “When you find one, it’s neat. It’s a really cool experience.

Little device makes a big splash

The small, 60-pound, battery-powered ROV, designed and built over two quarters, is equipped with up to four removable video cameras, four high-intensity lamps (serving, in essence, as headlights), a navigational compass, a timer, and sensors to measure depth, pressure and temperature. Four variable-speed motors enable vertical, forward and reverse movement and turning maneuverability. RIT students custom-built most circuit boards, wrote the software and created the graphical user interface used to control the device. All components are housed in watertight canisters (using 88 seals); a lightweight aluminum frame is rugged and modifiable.

The explorer is controlled by a joystick attached to a laptop computer that communicates with a microprocessor (the ROV’s “command center”) via a 680-foot-long fiber-optic cable. A human at the controls sees what the ROV “sees” through live video streaming and sensor readings.

The device is capable of diving at about two feet per second to a depth of 400 feet—about twice as deep as a skilled scuba diver can descend. A foam top helps achieve neutral buoyancy, enabling the ROV to remain level while underwater. A 100-minute battery life allows it to stay underwater longer than human divers. Future enhancements may include the addition of a mechanical arm and extended diving capability—perhaps enabling the explorer to reach Lake Ontario’s maximum depth of about 800 feet.

Building the ROV cost the RIT team about $15,000, including $10,000 from sponsors. An equivalent commercially produced underwater ROV would cost $20,000 to $50,000, Scoville says. He describes the members of his team as not merely students, but skilled, practicing engineers.

“I lucked out with a really good team,” he says. “We were told it couldn’t be done.”

Michael Saffran | EurekAlert!
Further information:
http://www.rit.edu/news/pics/rov
http://www.rit.edu/~sjg2490/ROV/team.html
http://www.rit.edu

More articles from Ecology, The Environment and Conservation:

nachricht Making Oceans Plastic Free - Project tackles the problem of plastic pollution in the oceans
31.05.2017 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

nachricht Nitrogen Oxides Emissions: Traffic Dramatically Underestimated as Major Polluter
31.05.2017 | Universität Innsbruck

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

New 3-D display takes the eye fatigue out of virtual reality

22.06.2017 | Information Technology

New technique makes brain scans better

22.06.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>