Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Manchester scientists take on the crystal maze

22.05.2006


Scientists at The University of Manchester are to create the first 3D model of the maze-like crystals known as Zeolites.



Professor Michael Anderson of the University’s Centre for Microporous Materials will lead an international research team in a bid to create the first 3D ‘map’ of the material.

Zeolites are porous crystals commonly known as molecular sieves. They are made up of a complex maze of tunnels which can be used to purify or filter materials such as water or crude oil when they are passed through the crystal.


The aim of the three-year project is to understand how Zeolite crystals grow in order to gain a better understanding of their morphology. If successful, the model will then be used to inform new techniques for controlling crystal growth.

Professor Anderson said: “If we can create a model of the complex 3D puzzle inside porous materials such as Zeolites we will be one step closer to understanding how to control the growth and final shapes of these crystals.

“If we can control crystal growth then we will have the potential to create defect free crystals with unlimited applications in electronics, oil refinement and even nuclear clean-up.”

An analytical technique known as Atomic Force Microscopy (AFM) will be used to map the topology of the material at a sub-nanometre scale. Electron Microscopy will also be used to analyse the crystal interior structure and defects. Both techniques will be combined with advanced theory and modelling techniques to create the model.

The research will be funded by a £1.1m grant from the Engineering and Physical Sciences Research Council.

Professor Anderson added: “We hope to substantially improve the fundamental understanding of the crystal growth of a whole class of nano-porous materials.”

Simon Hunter | alfa
Further information:
http://www.manchester.ac.uk

More articles from Ecology, The Environment and Conservation:

nachricht Listening in: Acoustic monitoring devices detect illegal hunting and logging
14.12.2017 | Gesellschaft für Ökologie e.V.

nachricht How fires are changing the tundra’s face
12.12.2017 | Gesellschaft für Ökologie e.V.

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>