Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sludge recycling sends antiseptic soap ingredient to agriculture

28.04.2006


Researchers at the Johns Hopkins Bloomberg School of Public Health measured levels of an antibacterial hand soap ingredient, triclocarban, as it passed through a wastewater treatment facility. They determined that approximately 75 percent of the ingredient washed down the drain by consumers persists during wastewater treatment and accumulates in municipal sludge, which later is used as fertilizer for crops. Their findings are presented in a study appearing in the online and print editions of the journal Environmental Science & Technology. More studies are underway to determine if triclocarban, which is toxic when ingested, can migrate from sludge into foods, thereby potentially posing a human health risk.



"The observed persistence of triclocarban is remarkable," said lead author, Jochen Heidler, a PhD candidate in the Bloomberg School’s Department of Environmental Health Sciences. "In the plant, the chemical contained in sludge underwent biological treatment for an average period of almost three weeks, yet very little degradation took place."

Senior author Rolf U. Halden, PhD, assistant professor and co-founder of the Johns Hopkins Center for Water and Health, said, "Triclocarban does not break down easily even under the intense measures applied during wastewater treatment. Triclocarban is leading a peculiar double life. Following its intended use as a topical antiseptic, we are effectively and inadvertently using it as an agricultural pesticide that is neither regulated nor monitored."


For the study, the Hopkins researchers collected samples from a large urban sewage treatment facility in the eastern United States. Over a period of weeks, they tracked the mass of triclocarban entering the plant in wastewater and leaving it in reclaimed water and municipal sludge. Measurements were done by isotope dilution mass spectrometry, a cutting-edge approach in environmental analytical chemistry. Using the acquired information on chemical concentrations and flow volumes within the facility, they calculated the total mass of triclocarban entering the plant and the chemical’s behavior during treatment.

According to the study, the facility was highly effective in removing triclocarban from wastewater. Only about 3 percent of triclocarban molecules entering the plant were discharged into surface water along with the treated effluent. However, very little degradation of the triclocarban occurred, due to the compound’s polychlorinated aromatic chemical structure. Approximately 75 percent of the initial mass accumulated in sludge, where it remained chemically unchanged. Anaerobic digestion reduced the overall sludge volume but not the quantity of triclocarban, thereby concentrating the antiseptic agent to levels several thousand-fold higher than those found in raw wastewater. At the particular plant observed, 95 percent of the sludge is recycled for other uses, such as being sold as a soil conditioner and crop fertilizer.

"The irony is twofold," said Halden. "First, to protect our health, we mass-produce and use a toxic chemical which the Food and Drug Administration has determined has no scientifically proven benefit. Second, when we try to do the right thing by recycling nutrients contained in biosolids, we end up spreading a known reproductive toxicant on the soil where we grow our food. The study shows just how important it is to consider the full life cycle of the chemicals we manufacture for use in our daily life."

Halden’s previous research determined that triclocarban, similar to the structurally related antimicrobial triclosan, also contaminates rivers and streams across the United States.

Tim Parsons | EurekAlert!
Further information:
http://www.jhsph.edu

More articles from Ecology, The Environment and Conservation:

nachricht Global threat to primates concerns us all
19.01.2017 | Deutsches Primatenzentrum GmbH - Leibniz-Institut für Primatenforschung

nachricht Reducing household waste with less energy
18.01.2017 | FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>