Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers discover way to transport environmental arsenic to plant leaves in new clean-up strategy

13.04.2006


Environmental arsenic pollution is a serious and growing environmental problem, especially on the Indian subcontinent. Researchers at the University of Georgia had, several years ago, used genetic techniques to create "arsenic-eating" plants that could be planted on polluted sites.



There was a problem, however. The arsenic sequestered from soil remained largely in the roots of the plant, making it difficult to harvest for safe disposal. Now, the research team, led by geneticist Richard Meagher, has discovered a way to move the arsenic from roots to shoots. The payoff could be a new and effective tool in cleaning up thousands of sites where arsenic presents serious dangers to human health.

The research was just published in the Proceedings of the National Academy of Sciences (PNAS). Other authors of the paper include Om Parkash Dhankher and Elizabeth McKinney from the department of genetics at UGA and Barry Rosen of Wayne State University.


"High levels of arsenic in soil and drinking water have been reported around the world," said Meagher, "but the situation is worst in India and Bangladesh, where around 400 million people are at risk of arsenic poisoning. Unfortunately, the high cost of using excavation and reburial at these sites makes these technologies unacceptable for cleaning up the vast areas of the planet that need arsenic remediation. As a result, the overwhelming majority of arsenic-contaminated sites are not being cleaned up."

The problem is vast. The World Health Organization (WHO) predicts that long-term exposure to arsenic could reach epidemic proportions, the PNAS paper reports. The WHO says a staggering 1 in 10 people in northern India and Bangladesh may ultimately die of diseases resulting from arsenic-related poisoning.

The new strategy is part of what researchers call phytoremediation--the cleaning of polluted soils through the use of plants that sequester poisons, make them less harmful, and which can then be harvested--and has the potential to be of use on millions of acres of arsenic-polluted lands worldwide.

In research reported in 2002 in Nature Biotechnology, Meagher’s team inserted two unrelated genes from the bacterium E. coli called arsC and ECS into Arabidopsis, a model lab plant and small member of the mustard family. This allowed the plants to resist the toxic effects of arsenic and sequester three-fold more arsenic in their shoots than normal plants. Still this was too ineffective to allow planting of the transgenic plants on arsenic-polluted sites, since far more arsenic needed to be moved into the plant leaves for safe harvesting and disposal.

In the just-reported research, the team identified a single gene, ACR2, in the Arabidopsis genome as one that allows the plants to move sequestered arsenic in roots. By engineering plant lines with a silenced ACR2 gene, they discovered they could get 16-fold more arsenic in shoots than in natural wild-type Arabidopsis. This experiment identified the active mechanism for sequestering arsenic in roots.

"We want a 35- to 50-fold increase in these plants’ ability to sequester arsenic," said Meagher, "and now that we understand the mechanism, we believe that is possible." Indeed, it appears possible to create arsenic-eaters among tree, shrub and even grass species, using the new knowledge.

The problem of arsenic pollution is especially severe all over the Ganges River basin in India. During the so-called "Green Revolution" of the ’60s and ’70s, the cultivation of rice in flooded fields became pervasive, and workers dug open wells all over India through soil and rocks with naturally occurring arsenic. The result was widespread arsenic pollution from contaminated water. The problem is thus extremely widespread and not the result of industrial accidents or practices.

Kim Carlyle | EurekAlert!
Further information:
http://www.uga.edu

More articles from Ecology, The Environment and Conservation:

nachricht Successful calculation of human and natural influence on cloud formation
04.11.2016 | Goethe-Universität Frankfurt am Main

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Will Earth still exist 5 billion years from now?

08.12.2016 | Physics and Astronomy

Oxygen can wake up dormant bacteria for antibiotic attacks

08.12.2016 | Health and Medicine

Newly discovered bacteria-binding protein in the intestine

08.12.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>