Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Unique weather radar to investigate snowfall

20.03.2006


The Department of Physical Sciences at the University of Helsinki has acquired a state-of-the-art polarimetric weather radar. The new radar is reserved exclusively for research. Its most important meteorological research target is the physics of rain clouds, and scientists intend to focus on snow and sleet in particular. Snowfall and its polarimetric measurements have hardly been studied anywhere else in the world, although in the Finnish conditions, for instance, snowfall is one of the key weather elements.



The first test measurements of the prototype radar built for the University’s radar laboratory provided good evidence for the potential of a polarisation weather radar. The largest road traffic catastrophe in the Helsinki metropolitan area took place on 17 March 2005, with several multiple pile-ups on all Helsinki. The new radar was just undergoing test runs and it immediately revealed the meteorological factors which led to the accidents.

Radar images showed that the road conditions before the accident were dry and cold with only slight snowfall. There was, however, supercooled water in the air, which made the road surfaces slippery immediately prior to the accidents. At the time of the accidents, a narrow zone of heavy snowfall arrived from the south, suddenly reducing visibility. In places, this was followed by a larger area of snowfall with a high content of supercooled water.


Radar signals distinguish rain from snow

As the above example shows, the polarisation weather radar can reveal meteorological factors behind accidents. There is no radar as efficient in every aspect anywhere else in the world. Its exceptional features include an antenna with top-class properties, a versatile and powerful transmitter and an ability to measure two perpendicular polarisations.

The radar works by simultaneously transmitting two differently polarised microwaves to the atmosphere and receiving their reflected signals from the rain. The slight differences in the weak reflected signals with different polarisations enable scientists to deduce whether the precipitation falls as water, snow, hail or sleet, and gives information on the quantity and quality of the various precipitation particles (water drops, ice crystals, snow flakes or hailstones) over distances up to 200 km at all levels of the atmosphere. This is not possible using conventional weather radars, which only show where there is precipitation without being able to distinguish between rain or snow.

The radar’s transmitter is designed so that it can transmit either ordinary microwave pulses or what is called coded pulses. This makes it possible to further improve the radar’s measuring capacity with the help of new mathematical processing methods of radar signals. Indeed, research at the University is also being carried out to develop radar technology and further improve its measuring capacity.

The University’s radar was manufactured in Finland. The properties required from the radar were defined by Timo Puhakka, PhD, radar laboratory manager, and the radar was designed and built by Vaisala Oyj in co-operation with the radar laboratory.

The radar is located at the University’s Kumpula campus, on top of the Physicum building under a round dome, which acts as a landmark for the campus.

Radar meteorology has been one of the focal areas of meteorological research at the University of Helsinki for more than 35 years. The University’s radar laboratory boasts radar meteorological expertise of the highest level and it is widely known internationally.

Minna Meriläinen | alfa
Further information:
http://www.helsinki.fi

More articles from Ecology, The Environment and Conservation:

nachricht International network connects experimental research in European waters
21.03.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht World Water Day 2017: It doesn’t Always Have to Be Drinking Water – Using Wastewater as a Resource
17.03.2017 | ISOE - Institut für sozial-ökologische Forschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>