Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Unique weather radar to investigate snowfall

20.03.2006


The Department of Physical Sciences at the University of Helsinki has acquired a state-of-the-art polarimetric weather radar. The new radar is reserved exclusively for research. Its most important meteorological research target is the physics of rain clouds, and scientists intend to focus on snow and sleet in particular. Snowfall and its polarimetric measurements have hardly been studied anywhere else in the world, although in the Finnish conditions, for instance, snowfall is one of the key weather elements.



The first test measurements of the prototype radar built for the University’s radar laboratory provided good evidence for the potential of a polarisation weather radar. The largest road traffic catastrophe in the Helsinki metropolitan area took place on 17 March 2005, with several multiple pile-ups on all Helsinki. The new radar was just undergoing test runs and it immediately revealed the meteorological factors which led to the accidents.

Radar images showed that the road conditions before the accident were dry and cold with only slight snowfall. There was, however, supercooled water in the air, which made the road surfaces slippery immediately prior to the accidents. At the time of the accidents, a narrow zone of heavy snowfall arrived from the south, suddenly reducing visibility. In places, this was followed by a larger area of snowfall with a high content of supercooled water.


Radar signals distinguish rain from snow

As the above example shows, the polarisation weather radar can reveal meteorological factors behind accidents. There is no radar as efficient in every aspect anywhere else in the world. Its exceptional features include an antenna with top-class properties, a versatile and powerful transmitter and an ability to measure two perpendicular polarisations.

The radar works by simultaneously transmitting two differently polarised microwaves to the atmosphere and receiving their reflected signals from the rain. The slight differences in the weak reflected signals with different polarisations enable scientists to deduce whether the precipitation falls as water, snow, hail or sleet, and gives information on the quantity and quality of the various precipitation particles (water drops, ice crystals, snow flakes or hailstones) over distances up to 200 km at all levels of the atmosphere. This is not possible using conventional weather radars, which only show where there is precipitation without being able to distinguish between rain or snow.

The radar’s transmitter is designed so that it can transmit either ordinary microwave pulses or what is called coded pulses. This makes it possible to further improve the radar’s measuring capacity with the help of new mathematical processing methods of radar signals. Indeed, research at the University is also being carried out to develop radar technology and further improve its measuring capacity.

The University’s radar was manufactured in Finland. The properties required from the radar were defined by Timo Puhakka, PhD, radar laboratory manager, and the radar was designed and built by Vaisala Oyj in co-operation with the radar laboratory.

The radar is located at the University’s Kumpula campus, on top of the Physicum building under a round dome, which acts as a landmark for the campus.

Radar meteorology has been one of the focal areas of meteorological research at the University of Helsinki for more than 35 years. The University’s radar laboratory boasts radar meteorological expertise of the highest level and it is widely known internationally.

Minna Meriläinen | alfa
Further information:
http://www.helsinki.fi

More articles from Ecology, The Environment and Conservation:

nachricht Bioinvasion on the rise
15.02.2017 | Universität Konstanz

nachricht Litter Levels in the Depths of the Arctic are On the Rise
10.02.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>