Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Unique weather radar to investigate snowfall

20.03.2006


The Department of Physical Sciences at the University of Helsinki has acquired a state-of-the-art polarimetric weather radar. The new radar is reserved exclusively for research. Its most important meteorological research target is the physics of rain clouds, and scientists intend to focus on snow and sleet in particular. Snowfall and its polarimetric measurements have hardly been studied anywhere else in the world, although in the Finnish conditions, for instance, snowfall is one of the key weather elements.



The first test measurements of the prototype radar built for the University’s radar laboratory provided good evidence for the potential of a polarisation weather radar. The largest road traffic catastrophe in the Helsinki metropolitan area took place on 17 March 2005, with several multiple pile-ups on all Helsinki. The new radar was just undergoing test runs and it immediately revealed the meteorological factors which led to the accidents.

Radar images showed that the road conditions before the accident were dry and cold with only slight snowfall. There was, however, supercooled water in the air, which made the road surfaces slippery immediately prior to the accidents. At the time of the accidents, a narrow zone of heavy snowfall arrived from the south, suddenly reducing visibility. In places, this was followed by a larger area of snowfall with a high content of supercooled water.


Radar signals distinguish rain from snow

As the above example shows, the polarisation weather radar can reveal meteorological factors behind accidents. There is no radar as efficient in every aspect anywhere else in the world. Its exceptional features include an antenna with top-class properties, a versatile and powerful transmitter and an ability to measure two perpendicular polarisations.

The radar works by simultaneously transmitting two differently polarised microwaves to the atmosphere and receiving their reflected signals from the rain. The slight differences in the weak reflected signals with different polarisations enable scientists to deduce whether the precipitation falls as water, snow, hail or sleet, and gives information on the quantity and quality of the various precipitation particles (water drops, ice crystals, snow flakes or hailstones) over distances up to 200 km at all levels of the atmosphere. This is not possible using conventional weather radars, which only show where there is precipitation without being able to distinguish between rain or snow.

The radar’s transmitter is designed so that it can transmit either ordinary microwave pulses or what is called coded pulses. This makes it possible to further improve the radar’s measuring capacity with the help of new mathematical processing methods of radar signals. Indeed, research at the University is also being carried out to develop radar technology and further improve its measuring capacity.

The University’s radar was manufactured in Finland. The properties required from the radar were defined by Timo Puhakka, PhD, radar laboratory manager, and the radar was designed and built by Vaisala Oyj in co-operation with the radar laboratory.

The radar is located at the University’s Kumpula campus, on top of the Physicum building under a round dome, which acts as a landmark for the campus.

Radar meteorology has been one of the focal areas of meteorological research at the University of Helsinki for more than 35 years. The University’s radar laboratory boasts radar meteorological expertise of the highest level and it is widely known internationally.

Minna Meriläinen | alfa
Further information:
http://www.helsinki.fi

More articles from Ecology, The Environment and Conservation:

nachricht Safeguarding sustainability through forest certification mapping
27.06.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht Dune ecosystem modelling
26.06.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA mission surfs through waves in space to understand space weather

25.07.2017 | Physics and Astronomy

Strength of tectonic plates may explain shape of the Tibetan Plateau, study finds

25.07.2017 | Earth Sciences

The dense vessel network regulates formation of thrombocytes in the bone marrow

25.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>