Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Saving rubber for future generations

09.03.2006


Natural rubber is currently technically unavoidable for some purposes, despite the competition from synthetic rubber. Most notably, it accounts for 75% of the rubber used in the tyre industry. However, although Hevea brasiliensis originated in the Amazon Basin, rubber growing has only really developed in Asia and Africa. In Latin America, “South American leaf disease”, caused by the fungus Microcyclus ulei, has until now totally prevented the development of rubber growing, or at least almost totally: rubber trees have become resistant to the fungus in some areas of Amazonia. However, to date, there have never been any varieties that combine parasite resistance and productivity. This could be disastrous for rubber growing worldwide were the fungus to be introduced accidentally into Asia or Africa.



Resistant and high-yielding rubber plants in quarantine at CIRAD

The threat is on the verge of being overcome. In late December 2005, plants of thirteen high-yielding rubber varieties resistant to Microcyclus were shipped to CIRAD from Michelin’s Itubera estate in Brazil. They are now in quarantine in a confinement zone, where they will remain for two years and undergo a range of tests to ensure that they do not carry any spores of the parasite.


These varieties are the first major step forward in over twenty years’ research at CIRAD, working since 1992 with Michelin, in Montpellier, French Guiana and Brazil. They are controlled crosses produced by hand pollination, and have been assessed for twelve years at Michelin’s Itubera estate. The process is continuing, crossing very high-yielding varieties that are susceptible to the disease, such as those currently grown in Asia and Africa, with resistant or highly tolerant trees from the Amazon Basin that are not so high-yielding*. Every year, during the short flowering period, researchers remove the stamens from the flowers of one variety so as to inseminate the flower by hand with the pistils of another. The resulting seeds are then germinated to produce thousands of seedlings that will grow in the presence of the disease. Those that resist strong parasite pressure in the field are selected based on their productivity after five to seven years. New plants are produced each year.

The plants that have been in the CIRAD glasshouses for the past few weeks are the first varieties produced under this research programme to reach the pre-development stage.

A new phase of tests in metropolitan France and several African and Asian countries

The latest phase of tests should provide answers to several questions. While the varieties are both resistant and high-yielding at Michelin’s estate in Bahia, will they remain so under other environmental conditions, particularly in Asia and Asia, and even in other parts of South America? CIRAD’s Microcyclus ulei fungus collection in Kourou, French Guiana, which includes several strains from different countries, could help to answer that question. There is also another question: what are the risks of the plants being susceptible to other parasites?

The first step is to ensure that the parasite was not introduced into France during transport, despite all the precautions taken. The planting material was transferred in the form of budded stumps of the thirteen genotypes involved. Before they left Brazil, they were given pesticide and fungicide treatments against Microcyclus ulei but also other parasites, as laid down in French law. On arrival, they were potted in the CIRAD glasshouses in Montpellier. They are now growing, and testing will begin in the next few months, once they have leaves. The parasite may not immediately be visible, which is why non-resistant control plants have been placed next to the test plants. If the plants pass this first test, a second round of budding should rule out any risk of “dormant” spores. If this stage is successful, the plants will be sent to partner research organizations in Africa and Asia, where they will again be placed in quarantine and undergo further tests. Trees of varieties created subsequently in Brazil will be tested in the same way each year.

Improving the breeding technique

Alongside this, researchers are working to improve the breeding technique, and have plans to use genetic markers. We now know which parts of the rubber genome are involved in resistance. However, things are not as simple as they look. Natural resistance to Microcyclus in rubber uses mechanisms that involve a large number of genes. Moreover, the fungus has already proved capable of overcoming resistance. What are the mechanisms involved? The answers that researchers manage to come up with in the coming years should shed light on how resistance develops and make it easier to breed resistant individuals.

* The rubber varieties currently grown in Asia and Africa in fact originated from a very small part of Amazonia. In the late 19th century, a British planter took tens of thousands of rubber seeds back to Kew Gardens. The resulting trees were shipped to Ceylon and Singapore, triggering the Asian commodity chain. Asia now produces 93% of the world’s natural rubber. It is Thailand that leads the market, with three million tonnes or 35% of global output. Africa accounts for 4% and South America the remaining 3%.

Jérôme Sainte-Beuve | alfa
Further information:
http://www.cirad.fr/en/actualite/communique.php?id=402

More articles from Ecology, The Environment and Conservation:

nachricht How does the loss of species alter ecosystems?
18.05.2017 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

nachricht Excess diesel emissions bring global health & environmental impacts
16.05.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>