Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Saving rubber for future generations

09.03.2006


Natural rubber is currently technically unavoidable for some purposes, despite the competition from synthetic rubber. Most notably, it accounts for 75% of the rubber used in the tyre industry. However, although Hevea brasiliensis originated in the Amazon Basin, rubber growing has only really developed in Asia and Africa. In Latin America, “South American leaf disease”, caused by the fungus Microcyclus ulei, has until now totally prevented the development of rubber growing, or at least almost totally: rubber trees have become resistant to the fungus in some areas of Amazonia. However, to date, there have never been any varieties that combine parasite resistance and productivity. This could be disastrous for rubber growing worldwide were the fungus to be introduced accidentally into Asia or Africa.



Resistant and high-yielding rubber plants in quarantine at CIRAD

The threat is on the verge of being overcome. In late December 2005, plants of thirteen high-yielding rubber varieties resistant to Microcyclus were shipped to CIRAD from Michelin’s Itubera estate in Brazil. They are now in quarantine in a confinement zone, where they will remain for two years and undergo a range of tests to ensure that they do not carry any spores of the parasite.


These varieties are the first major step forward in over twenty years’ research at CIRAD, working since 1992 with Michelin, in Montpellier, French Guiana and Brazil. They are controlled crosses produced by hand pollination, and have been assessed for twelve years at Michelin’s Itubera estate. The process is continuing, crossing very high-yielding varieties that are susceptible to the disease, such as those currently grown in Asia and Africa, with resistant or highly tolerant trees from the Amazon Basin that are not so high-yielding*. Every year, during the short flowering period, researchers remove the stamens from the flowers of one variety so as to inseminate the flower by hand with the pistils of another. The resulting seeds are then germinated to produce thousands of seedlings that will grow in the presence of the disease. Those that resist strong parasite pressure in the field are selected based on their productivity after five to seven years. New plants are produced each year.

The plants that have been in the CIRAD glasshouses for the past few weeks are the first varieties produced under this research programme to reach the pre-development stage.

A new phase of tests in metropolitan France and several African and Asian countries

The latest phase of tests should provide answers to several questions. While the varieties are both resistant and high-yielding at Michelin’s estate in Bahia, will they remain so under other environmental conditions, particularly in Asia and Asia, and even in other parts of South America? CIRAD’s Microcyclus ulei fungus collection in Kourou, French Guiana, which includes several strains from different countries, could help to answer that question. There is also another question: what are the risks of the plants being susceptible to other parasites?

The first step is to ensure that the parasite was not introduced into France during transport, despite all the precautions taken. The planting material was transferred in the form of budded stumps of the thirteen genotypes involved. Before they left Brazil, they were given pesticide and fungicide treatments against Microcyclus ulei but also other parasites, as laid down in French law. On arrival, they were potted in the CIRAD glasshouses in Montpellier. They are now growing, and testing will begin in the next few months, once they have leaves. The parasite may not immediately be visible, which is why non-resistant control plants have been placed next to the test plants. If the plants pass this first test, a second round of budding should rule out any risk of “dormant” spores. If this stage is successful, the plants will be sent to partner research organizations in Africa and Asia, where they will again be placed in quarantine and undergo further tests. Trees of varieties created subsequently in Brazil will be tested in the same way each year.

Improving the breeding technique

Alongside this, researchers are working to improve the breeding technique, and have plans to use genetic markers. We now know which parts of the rubber genome are involved in resistance. However, things are not as simple as they look. Natural resistance to Microcyclus in rubber uses mechanisms that involve a large number of genes. Moreover, the fungus has already proved capable of overcoming resistance. What are the mechanisms involved? The answers that researchers manage to come up with in the coming years should shed light on how resistance develops and make it easier to breed resistant individuals.

* The rubber varieties currently grown in Asia and Africa in fact originated from a very small part of Amazonia. In the late 19th century, a British planter took tens of thousands of rubber seeds back to Kew Gardens. The resulting trees were shipped to Ceylon and Singapore, triggering the Asian commodity chain. Asia now produces 93% of the world’s natural rubber. It is Thailand that leads the market, with three million tonnes or 35% of global output. Africa accounts for 4% and South America the remaining 3%.

Jérôme Sainte-Beuve | alfa
Further information:
http://www.cirad.fr/en/actualite/communique.php?id=402

More articles from Ecology, The Environment and Conservation:

nachricht Successful calculation of human and natural influence on cloud formation
04.11.2016 | Goethe-Universität Frankfurt am Main

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>