Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Falcon decoys and simulated rifle fire keep birds from oil

06.03.2006


A fake peregrine and a radar-activated cannon work better at keeping birds away from oil sands tailings than the current system, says new research from the University of Alberta.



Oil sands mining is one of several industrial activities that produces waste dangerous to waterfowl. The birds, such as ducks, geese and swans, are attracted to freshwater ponds for foraging, roosting and nesting, and as stopover sites during migration. Spring migration is a particular problem in north-eastern Alberta, when the warm-water waste forms tailing ponds from oil sands mines are the only open water--the natural bodies are still frozen. When waterfowl land in these ponds, they may ingest oil and their plumage may become oiled with waste bitumen, potentially preventing birds from flying or leading to lost insulation and death from hypothermia. Current deterrents being used are not always successful because wildlife either ignore the stimuli or habituate to them.

Dr. Colleen Cassady St. Clair and her former undergraduate student, Rob Ronconi (now a Ph.D student at the University of Victoria), compared the industry standard--randomly firing cannons and stationary human effigies--to a radar-activated system which fires cannons and also activates large peregrine falcon effigies only when birds approach. The radar detects the birds and relays the information to a computer that automatically deploys the deterrents. Ronconi led the fieldwork and observed almost 8000 birds during the experiment, which took place in northern Alberta near Fort McMurray. The research has just been published in the "Journal of Applied Ecology."


They found the radar system more effective at deterring birds from landing and then later learned the cannons were even more effective than the peregrines. Part of the reason, says St. Clair may be that the birds are less likely to habituate to the cannons because they are not fired all the time but only when the birds approach. The radar system is currently being used by Albian Sands, Energy.

"This system could be helpful in deterring birds from industrial ponds and we have suggested some potential applications to oil spills at sea," said St. Clair, who is from the Faculty of Science. "In the oilsands, several hundred birds are probably oiled each year and that number might reach into the thousands in some spring conditions."

The system was also able to detect four times as many birds as visual sightings and could also detect the animals at night--particularly critical for bird deterrence because shorebirds, ducks and geese are nocturnal as well as diurnal migrants. But although the research shows promise for radar-activated on-demand deterrents, bird deterrence is not the long-term solution, says St. Clair. In addition to deterrence, the oil sands industry is committed to the reclamation of mines and tailings ponds post production and is also developing processes that will negate the need for hazardous ponds. "The problem will be reduced in time as the oilsands move to technologies that do not produce tailings ponds but that technology is likely to be at least 10 years away," said St. Clair. "In the meantime, on-demand cannon deterrent systems offer the potential of better avian deterrence at industrial sites."

Phoebe Dey | EurekAlert!
Further information:
http://www.ualberta.ca

More articles from Ecology, The Environment and Conservation:

nachricht Bioinvasion on the rise
15.02.2017 | Universität Konstanz

nachricht Litter Levels in the Depths of the Arctic are On the Rise
10.02.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>