Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cleaning with catalysts

17.10.2005


On repeated occasions we have read that volatile organic compounds are danaging for the atmosphere and to our health. This is why a group of researchers at the Leioa campus of the University of the Basque Country have put forward a process for “cleaning” these compounds before they are emitted into the atmosphere. Industry was chosen, amongst all the sources of these compounds, as the object for study.



To eliminate these compounds, they used catalytic oxidation, i.e. using oxygen from the atmosphere and, with the help of a catalyst, burning off the prejudicial compounds.

Catalysts, in this process, provide a number of advantages. On the one hand, they reduce the energy necessary for burning the contaminant compounds and, on the other, each type of contaminant gas has its specific catalyst. Nevertheless, for the combustion process to be effective, the catalysts have to comply with a series of requirements.


Where and when?

Catalysts usually have two basic components: the base and the active phase. The base usually involves a porous solid (in order to achieve the maximum surface for reaction). As regards the active phase, this is the compound that initiates the reaction, normally a metal such as platinum or palladium or, as in the case of the Leioa research, a zeolite.

In the process of catalysis, the contaminant gas enters the pores of the catalyst and it is there that it reacts with the active phase. Water, carbon dioxide and a halogenated compound are produced as a result of this reaction. This last product is subsequently neutralised in a shower of caustic soda. Thus, only H20 and CO2 are liberated into the atmosphere.

In this case the researchers worked with zeolite catalysts and the results obtained showed that the canals present within the structure of the zeolites are of great importance in the reaction.

Zeolites may have parallel or intercrossing; and it would seem that the zeolites with the second structure are better for this type of reaction. This is because an obstacle in a zeolite structure of parallel canals will prevent the gas passing through while this does not happen in the case of zeolites with a structure of intercrossing canals.

The kinetics of the reaction

But apart from the type of canal there are other characteristics that influence the reaction. Very important, for example, is the amount of contaminant gas, the quantity of catalyst used and the temperature of combustion. Two more factors are the kinetics of the reaction and its evolution.

Temperature, in fact, is one of the most important parameters. The lower the temperature of combustion, the less will be the energy spent.

The researchers are currently trying to establish the durability of the catalysts, i.e. to ascertain when active phase compound has to be replaced or renewed so that the “cleaning” of the volatile organic compounds continues to operate.

Garazi Andonegi | alfa
Further information:
http://www.basqueresearch.com

More articles from Ecology, The Environment and Conservation:

nachricht Bioinvasion on the rise
15.02.2017 | Universität Konstanz

nachricht Litter Levels in the Depths of the Arctic are On the Rise
10.02.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Start codons in DNA may be more numerous than previously thought

21.02.2017 | Life Sciences

An alternative to opioids? Compound from marine snail is potent pain reliever

21.02.2017 | Life Sciences

Warming ponds could accelerate climate change

21.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>