Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Predicting where flooding will occur in the West

30.09.2005


For many areas of the West, the Federal Emergency Management Agency’s Flood Insurance Rate Maps (FIRMS) overestimate the amount of land area within the 100-year floodplain. New research suggests a way to improve the maps.


Computer-generated model of how 1997 Tropical storm Nora affected Tiger Wash in Arizona’s Harquahala Mountains. The red color shows where the water was deepest, and the brown indicates upland areas which did not flood. Photo credit: Jon Pelletier, UA.



The new three-pronged approach combines a new numerical computer model with two additional methods, satellite-image analysis and field observations. Each method serves as a check on the other two. The research team focused on the floodplains for a 10-year flood, a 100-year flood and a maximum flood for two sites in Arizona.

In addition to providing better hazard information to the public, revising the floodplains maps could have major economic impact in the rapidly growing Southwest. Often, homeowners in areas deemed to be in a floodplain must buy flood insurance in addition to regular homeowner’s insurance.


"I think the important thing is that we have three methods that give darn near the same result, and it’s a way smaller floodplain than the FAN model FEMA has generally used," said research team leader Jon D. Pelletier, an associate professor of geosciences at The University of Arizona in Tucson. "These three independent methods converge on the same answer. … That was really surprising to us."

The combined method applies to the foothills of western mountain ranges such as the Santa Catalinas and the Tortolitas outside Tucson. Many western cities, including Phoenix, Las Vegas and Denver, have similar foothills.

"You have a lot of small channels draining the mountains, and the floodplains are very complex," said Pelletier. "Back in the day when data that mapped these small channels weren’t available, FEMA called it all floodplain. That’s fine in the Lower Mississippi Valley, but it’s not appropriate out here. These three methods give us a new level of detail. We’re looking at a scale of five to 10 meters and can see that the area of the landscape that’s prone to flooding is often really small. I predict our result would apply to many other foothills regions in Arizona."

Pelletier, Larry Mayer, a UA adjunct professor of geosciences, and Philip A. Pearthree, a research geologist with the Arizona Geological Survey in Tucson, and their colleagues have published their findings in the current issue of GSA Bulletin, a publication of the Geological Society of America. A complete list of authors and the reference for the paper can be found at the end of this release. The research was supported by the National Science Foundation, the Pima County Flood Control District, the Arizona Geological Survey and the Flood Control District of Maricopa County.

In the region of the West characterized by towering mountains interspersed with broad, flat valley floors, the land sloping away from the mouth of a mountain canyon, known as the alluvial fan, is criss-crossed by a myriad of small, shallow channels that drain into the valley below. Such topography is found in Arizona, Utah, western Colorado, western New Mexico and parts of eastern and southern California.

Even in a major flood, some upland areas between channels remain dry. However, traditional techniques for assessing the potential extent of floods on alluvial fans often designate those upland areas as flood-prone, thereby overestimating the amount of land in danger of flooding.

Pelletier was embarrassed when he had to tell students that such assessments were state-of-the-art. So he and his colleagues decided to devise a better way.

To create a computer model to predict flood intensity, Pelletier used very detailed maps of alluvial fans, data from stream gauges and a mathematical analysis that predicted how the water flowed through the numerous small channels on a given alluvial fan during a given storm.

For maps, Pelletier used digital elevation models (DEMs), which are computer-generated maps made from low-altitude aerial photographs that can show changes in elevation of only 4 inches (10 cm). Such maps are available for Wild Burro Canyon in the Tortolita Mountains outside of Tucson, Ariz. and Tiger Wash in the Harquahala Mountains west of Phoenix. Because of the complex topography of those two sites, land that hasn’t flooded in thousands of years can be separated from the active floodplain by an elevation difference of only one to two feet. Both areas also have stream gauges or field observations that record the volume of water during past floods.

Pelletier plugged the data for two historic floods -- the September 1997 flood in Tiger Wash from tropical storm Nora and the July 1988 flood in Wild Burro Canyon from monsoon rains -- into his mathematical model. The computer then created maps that predicted where the waters from those floods went.

Pearthree and Mayer had already done detailed studies of how floods affected those sites. Mayer had developed a method that uses LANDSAT satellite images to document changes that occurred on the landscape during floods. Pearthree had used traditional field-based method shortly after the flooding to see where inundation had occurred.

Pelletier then compared the computer-generated maps to two retrospective methods of assessing floods on alluvial fans. The computer model slightly underestimated the observed extent of the floods, matching the other methods for about 85 percent of the time. He’s now improving the model to increase its accuracy.

"Numerical models like mine are much faster than the other two methods," Pelletier said. "But it’s important to have independent verification and the other two techniques provide that."

Geologic field-mapping, while very accurate, requires that highly trained personnel spend many man-hours mapping the soils and other landscape features. Tiger Wash and Wild Burro Canyon have had such intensive study, but few other areas have. In contrast, the satellite-based method can be used for extensive regions of the West but can only provide information about what has occurred within the last 20 years. So if a particular canyon had only moderate floods during that time, the satellite-based method cannot indicate what areas will be inundated during a 100-year flood.

Pelletier’s computer method uses data that are becoming more readily available for more areas. He can then specify the size of flood -- 10-year, 100-year or maximum level -- for a specific canyon, and the computer predicts where and how high the floodwaters will go. His model provides a probability of whether a particular piece of land will be flooded by a specific size of flood.

He wants to further test the three-pronged approach in other areas, including Clark County, Nev., one of the fastest-growing counties in the country, where Las Vegas is located.

The scientists’ coauthors include P. Kyle House of the Nevada Bureau of Mines and Geology at the University of Nevada, Reno; Karen A. Dempsey of Portland, Ore.; Jeanne E. Klawon of the U.S. Bureau of Reclamation in Denver; and Kirk R. Vincent of the U.S. Geological Survey in Boulder, Colo. Their paper, "An integrated approach to flood hazard assessment on alluvial fans using numerical modeling, field mapping, and remote sensing," is in the September/October issue of the GSA Bulletin.

Mari N. Jensen | EurekAlert!
Further information:
http://www.arizona.edu

More articles from Ecology, The Environment and Conservation:

nachricht Dune ecosystem modelling
23.06.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Understanding animal social networks can aid wildlife conservation
23.06.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>