Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Applying Ecological Laws to Bacteria

03.08.2005


Researchers have obtained further evidence that one of the oldest biological laws can also be applied to bacteria living in the sump tank reservoirs of machines in an engineering workshop in Oxford, according to a paper published in Environmental Microbiology.



Scientists from the Centre for Ecology & Hydrology (CEH) in Oxford, found that the patterns of abundance and genetic diversity of bacteria living in oil-based metal-cutting fluid reservoirs were similar to those found in higher animal and plant communities. This confirms the ecological law that states that the bigger the area the greater the number of species present.

Scientists previously thought that biodiversity at the microbial level, was fundamentally different to that of larger organisms, such as plants and mammals. This discovery implies that similar processes, which structure the communities of large organisms, also determine those of microbial communities.


Engineering machine metal-cutting fluid reservoirs are used as coolants and lubricants in metal machining processes. The reservoirs of the machines studied, such as lathes and mills, were of increasing size and were said to be analogous to an archipelago of islands.

Microbial communities impact greatly on life on Earth. They can help promote plant growth and protect plants against disease, as well as reducing pollution. The finding that microorganisms follow the same patterns as plants and animals has potential significance in medicine, agriculture and pollution-control. By applying the new insights to the microbial world, researchers may be able to improve the exploitation of vital microbial processes, such as sewage treatment.

Dr Christopher van der Gast, from CEH, lead author on the paper, comments: ‘This is an important finding as it will allow us to predict some fundamental diversity patterns of bacterial communities from information that is fairly simple to obtain. Combined with the amazing technological advances made in environmental microbiology, we hope that we will be able to predict how these communities respond to changes in their environment, as well engineering these communities to perform useful tasks.’

Lucy Mansfield | alfa
Further information:
http://www.blackwell-synergy.com/loi/emi

More articles from Ecology, The Environment and Conservation:

nachricht Global threat to primates concerns us all
19.01.2017 | Deutsches Primatenzentrum GmbH - Leibniz-Institut für Primatenforschung

nachricht Reducing household waste with less energy
18.01.2017 | FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

Quantum optical sensor for the first time tested in space – with a laser system from Berlin

23.01.2017 | Physics and Astronomy

The interactome of infected neural cells reveals new therapeutic targets for Zika

23.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>