Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Coral reef fish larvae settle close to home


Tracing the larvae of marine organisms from where they were born to their ultimate destination has been regarded as one of the greatest challenges in ocean science. Managers of marine reserves areas have eagerly sought this information to help determine the optimal size and spacing of marine reserves; well-planned reserves should help ensure that protected populations can sustain themselves as well as provide a source of larvae to maintain exploited populations in areas open to fishing. In a new study, researchers have managed to uncover the patterns of local dispersion for a small coral reef fish species by employing a combination of inventive tracking techniques. In addition to providing ecological information about one particular fish species, the work suggests ways that the ecology of other fish can be studied and applied to strategies for the maintenance of stable populations.

Most marine fishes start their lives as tiny larvae, smaller than a millimeter, and any thought of tagging them to track their movements was once considered impossible. However, researchers Geoff Jones from James Cook University (Australia), Serge Planes from the University of Perpignan (France), and Simon Thorrold from Woods Hole Oceanographic Institute have overcome this problem with a novel application of DNA paternity analysis, in combination with a means of marking larvae with the antibiotic tetracycline. They show that for the panda clownfish (Amphiprion polymnus), a significant proportion of larvae ultimately move less than a few hundred meters away from their parents. In fact, the researchers found that one third of juveniles settled within a so-called "natal area" covering just two hectares (less than five acres). Although the other two-thirds of the fish have yet to be traced, they appear to have travelled in excess of 10 km (6.2 mi) away from their birth site. The study also shows that although no individuals returned to their parents, a few made their home less than 50 meters away. (Hence, the authors point out, Nemo the clownfish may not have been living with his dad, but he might have settled just down the street.)

Although clownfish spend a relatively short period of time as larvae (approximately 10 days), the results are significant because they document the smallest scale of dispersal known for a marine fish species. Clownfish are subject to a thriving aquarium-fish trade in many tropical countries, and their numbers have been seriously depleted. This study provides real hope that marine reserves can provide the right balance between conserving such species and exploiting them in a sustainable manner.

Heidi Hardman | EurekAlert!
Further information:

More articles from Ecology, The Environment and Conservation:

nachricht Dispersal of Fish Eggs by Water Birds – Just a Myth?
19.02.2018 | Universität Basel

nachricht Removing fossil fuel subsidies will not reduce CO2 emissions as much as hoped
08.02.2018 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

Physicists made crystal lattice from polaritons

20.03.2018 | Physics and Astronomy

Mars' oceans formed early, possibly aided by massive volcanic eruptions

20.03.2018 | Physics and Astronomy

Thawing permafrost produces more methane than expected

20.03.2018 | Earth Sciences

Science & Research
Overview of more VideoLinks >>>