Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New findings show persistent El Niño-like conditions during past global warming

24.06.2005


During the most recent period in Earth’s past with a climate warmer than today, the tropical Pacific was in a stable state of El Niño-like conditions, according to a new study by researchers at the University of California, Santa Cruz.



Whether this represents a likely scenario for the future, given the current rise in global temperatures, is uncertain. Nevertheless, the study has important implications for scientists trying to understand the global climate system and how it might respond to global warming, the researchers said.

El Niño is a temporary disruption of normal circulation patterns in the ocean and atmosphere in the tropical Pacific, with important consequences for weather around the globe. Because the system always returns to the normal circulation patterns after an El Niño event, many scientists have considered these patterns to be the only state in which the system can remain stable over long periods of time. The new study, published this week in the journal Science, shows that there is another stable state for the ocean-atmosphere system that is dramatically different from today’s.


"The stable configuration that we’ve gotten used to is not the only stable configuration for the tropical Pacific, and this suggests that the Earth’s system for global heat transport functioned in a fundamentally different way the last time the climate was warmer than it is today," said the study’s lead author, Michael Wara.

Wara, who earned a Ph.D. in ocean sciences at UCSC, is now studying law and environmental policy at Stanford University. His coauthors are Christina Ravelo, associate professor of ocean sciences at UCSC, and Margaret Delaney, professor of ocean sciences at UCSC.

The researchers based their findings on an analysis of hundreds of samples from sediment cores drilled from the ocean floor on opposite sides of the tropical Pacific Ocean. The sediment cores were obtained by the international Ocean Drilling Program from a site near Indonesia in the western Pacific and another site near the Galapagos Islands in the eastern Pacific.

The sediments contain the microscopic shells of tiny sea creatures called foraminifera that lived in the surface waters of the ocean. The chemistry of these shells--in particular, the ratio of magnesium to calcium--is highly sensitive to the temperature of the water in which they formed. By analyzing the composition of the shells, the researchers were to reconstruct a detailed record of sea-surface temperatures in the tropical Pacific during the Pliocene epoch, which lasted from about 5 million years ago to about 1.7 million years ago.

Currently, the normal sea-surface temperatures in the tropical Pacific show a strong gradient from cool temperatures in the eastern Pacific off South America, where upwelling of cold deep water occurs, to much warmer temperatures in the west, where the trade winds pile up warm surface waters. During an El Niño, the trade winds slacken and warm water spreads eastward across the tropical Pacific, drastically weakening the temperature gradient. The UCSC researchers found that sea-surface temperatures during the Pliocene were much like those seen during an El Niño event.

"It looks like a permanent El Niño," Ravelo said. "We know El Niños have far-reaching global climate effects today, so that gives us an idea of what the global climate system may have been like during the Pliocene."

The UCSC group’s findings contradict a study published earlier this year in Science, which used the same methods but found cooler rather than warmer temperatures in the eastern Pacific. Ravelo said the difference is probably due to the much smaller number of samples analyzed in the earlier study. The UCSC group obtained more than 400 data points for the same time period covered by six data points in the earlier paper.

"Maybe they were unlucky and got a couple of samples that don’t represent that time period well," Ravelo said.

Previous research by Ravelo and others has shown that conditions outside the tropics during the Pliocene were also consistent with a permanent El Niño-like state. The global consequences of El Niño events include dramatic changes in rainfall patterns, causing serious flooding in some areas while other regions experience droughts. Shifts in ocean temperatures also spread beyond the tropics, affecting fisheries along the California coast, for example.

According to Ravelo, however, the El Niño-like conditions of the Pliocene should not be regarded as a direct analogy for the future effects of global warming. Rather, the Pliocene climate should serve as a target for global climate models to test their ability to reproduce the full range of possible climate states. Climate experts use computer-driven climate models to help them understand how the climate system works and how it is likely to respond to changes such as the increasing concentration of greenhouse gases in the atmosphere.

"The current climate models are very good at reproducing stable conditions in the tropics like we have today, but they should also be able to reproduce this very different tropical climate state that was stable in the past. If they can’t, we know there is something missing," Ravelo said.

The new study reinforces the notion that the coupled systems of oceanic and atmospheric circulation that drive the global climate are capable of dramatic shifts from one stable state to another.

"Many aspects of the climate system that appear stable within a certain range of temperatures can shift dramatically when a particular threshold is passed," Wara said. "We can’t say where that threshold is, but it is a concern as we continue this ongoing global experiment of adding greenhouse gases to the atmosphere."

Tim Stephens | EurekAlert!
Further information:
http://www.ucsc.edu

More articles from Ecology, The Environment and Conservation:

nachricht Litter is present throughout the world’s oceans: 1,220 species affected
27.03.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht International network connects experimental research in European waters
21.03.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>